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Summary

Actions are guided by prior sensory information [1–10],

which is inherently uncertain. However, how the motor sys-
tem is sculpted by trial-by-trial content of current sensory

information remains largely unexplored. Previous work sug-
gests that conditional probabilities, learned under a particu-

lar context, can be used preemptively to influence the output

of the motor system [11–14]. To test this we used transcranial
magnetic stimulation (TMS) to read out corticospinal excit-

ability (CSE) during preparation for action in an instructed
delay task [15, 16]. We systematically varied the uncertainty

about an impending action by changing the validity of the
instructive visual cue. We used two information-theoretic

quantities to predict changes in CSE, prior to action, on
a trial-by-trial basis: entropy (average uncertainty) and sur-

prise (the stimulus-bound information conveyed by a visual
cue) [17–19]. Our data show that during preparation for ac-

tion, human CSE varies according to the entropy and sur-
prise conveyed by visual events guiding action. CSE in-

creases on trials with low entropy about the impending
action and low surprise conveyed by an event. Commensu-

rate effects were observed in reaction times. We suggest
that motor output is biased according to contextual probabil-

ities that are represented dynamically in the brain.

Results and Discussion

A fundamental feature of human movement is that anticipatory
knowledge of an impending action improves the speed and
accuracy of responses. For example, reaction times (RTs)
are faster when visual information indicates in advance which
action we will have to make [11–14]. Sensory information pro-
vides useful cues for guiding actions, which may be probabilis-
tic in nature. Learning the relative probabilities of impending
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actions may enable the nervous system to prepare motor out-
put prior to an event.

Sensory cues that predict action enable a gradual build-up
of preparatory activity in premotor and motor cortex prior to
action [4–10, 20]. This build-up is reflected by specific excit-
ability changes in corticospinal projections [15, 16]. Indeed,
a growing number of studies demonstrate quantifiable effects
of preparatory sensory information on the peripheral motor
system [21, 22] and the spinal cord [21]. This implies that the
predictive aspects of sensory information are learned and rep-
resented explicitly in the brain and that these representations
influence action preparation at several levels [15, 16, 23–25].

In the current study we asked how corticospinal excitability
(CSE) changes when subjects prepare an action based on vi-
sual cues (Figure 1A) under changing degrees of uncertainty
associated with an impending action. Understanding how
the brain uses the predictability of events to inform preparation
for action requires models of how this predictability is learned
and represented over time rather than how they change on
average. We, therefore, measured CSE prior to overt action
by measuring muscular responses to stimulation of the motor
cortex using transcranial magnetic stimulation (TMS) (see the
Experimental Procedures and the Supplemental Experimental
Procedures available online). We used established computa-
tional models to examine how the motor system might encode
the probability of future events for action preparation.

Naı̈ve, healthy participants prepared one of two actions
(thumb or little-finger flexion) in an instructed delay task. In
most trials a visual cue (CS) validly predicted a subsequent
imperative stimulus (IS); on invalid trials, it was followed by
the alternative imperative stimulus (Figure 1A). The proportion
of valid cues (i.e., the predictability of required actions) was
varied systematically across experimental blocks. Cue and im-
perative stimuli were sampled in each block from distributions
containing 85%–15%, 70%–30%, or 55%–45% of valid-invalid
trials. By using TMS, we probed effector-specific changes in
CSE after the CS but before the IS signaled the required action
(see the Experimental Procedures). An initial (conventional
ANOVA) analysis of RTs revealed that subjects, on average,
responded faster in blocks containing more valid trials (block
type, F2,18 = 4.97; p < 0.01; Figure S1) and faster on valid versus
invalid trials (trial type F1,9 = 6.9, p < 0.05). It, furthermore, sug-
gested that participants learned the underlying conditional
probabilities associated with each block (interaction trial-
type 3 block-type; F2,18 = 7.23, p < 0.01). This interaction re-
flected, on average, faster responses when invalid cues were
less likely (i.e., under less uncertainty). In line with these behav-
ioral effects, variations of conditional probabilities and cue val-
idity reliably affected CSE over both effectors. For both mus-
cles CSE was larger in blocks with high predictability (thumb:
F2,18 = 4.18, p < 0.05; little-finger: F2,18 = 9.56, p < 0.01); CSE
also was larger for the cued versus uncued muscle (thumb:
F3,27 = 6.38, p < 0.01; little-finger: F3,27 = 5.46, p < 0.01). For
the thumb, trial type and block type interacted significantly
(F6,54 = 3.91, p < 0.01); however, this failed to reach significance
for CSE measurements of the little finger (F6,54 = 0.63, p = 0.7).

This confirms previous work that decisions depend on the
probabilities of events and are, on average, represented in
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the motor system. However, the approach of comparing aver-
age activity levels between conditions does not disclose
dynamic updating of representations about uncertainty that
ensure efficient and fast action. We, thus, used two informa-
tion-theoretic measures, surprise and entropy [17–19], to pre-
dict changes in CSE and RTs on a trial-by-trial basis under
ideal observer assumptions. The ‘‘surprise’’ of a particular
event (stimulus) is the improbability of it occurring. For exam-
ple, in blocks containing 85% of valid cues, the probability of
an invalidly cued (i.e., unexpected) stimulus is low and is

Figure 1. Experimental Task and Explanatory Variables

(A) Schematic of the task. On valid trials, a preparatory CS predicted the

identity of a subsequent IS, cueing a button press with the right thumb or

little finger. On invalid trials the CS-IS mapping was invalid as the CS was

followed by the alternative IS. The validity of the CS varied across blocks

of 105 trials between 85:15%, 70:30%, and 55:45%, respectively, creating

blocks with, low, medium, and high uncertainty about imperative stimuli.

A single TMS pulse was applied during every trial, 200 ms before IS

appearance.

(B) Information theoretic and categorical quantities for two experimental

blocks. Examples are shown of entropy and surprise during blocks with

valid-invalid CS distributions of 85:15% (left panel) and 55:45% (right panel),

respectively. Top panel, entropy; middle panel, surprise; and lower panel,

regressors for a categorical model containing valid and invalid trial types.

The ensuing time series were used as predictors for modeling CSE and

RTs across the entire series of trials of each participant.
more surprising than a validly cued IS. In contrast entropy is
the average surprise over all possible outcomes and, there-
fore, is a measure of uncertainty about an event before it
occurs. For example, consider the outcome of a coin toss.
When the event – ‘‘heads’’ or ‘‘tails’’ – has an equal probability,
then the overall uncertainty is maximal (i.e., entropy is great-
est). Compare this to a biased coin in which probability of
heads is 0.1 (and tails is 0.9). Here, entropy is lower (i.e., there
is less overall uncertainty as to the outcome), but given the low
probability of a head, the event of a head occurring is more sur-
prising than for a fair coin. Surprise is event specific, whereas
entropy pertains to the context in which that event occurs. This
distinction is important as the entropy reflects uncertainty over
all possible outcomes that could occur in a particular context
(e.g., block); in contrast, surprise relates to a specific event
(i.e., trial) and is an observation-bound quantity [18, 19] (Fig-
ure 1B).

Specifically, we quantified the conditional entropy, Ĥ, of an
IS given a CS. This represents a rational measure of expected
uncertainty (see [26] for discussion) under the assumption that
contingencies among events are stationary (i.e., do not change
over time). In addition we quantified the surprise, ı̂, associated
with an IS given a preceding CS. This latter quantity may be
important for how we encode uncertainty, indicating that the
stationary assumption has been violated. Because surprise
can occur only after an event, its influence on CSE was mod-
eled based on the surprise of the preceding trial.

Figure 2 shows that RTs and muscle-specific CSE changes
are influenced by both entropy and surprise, although here
we plot these data for validly and invalidly cued trials. In our
analysis the information about block-type (which the subjects
did not have explicit access to) is implicitly encoded by en-
tropy and surprise computed from the cue and imperative
stimulus presented during each trial. High entropy was associ-
ated with a small delay-period CSE (thumb, 20.49 mV/bit; little
finger, 20.21 mV/bit). A surprising imperative stimulus on the
preceding trial resulted in a similar decrease of CSE (thumb,
20.24 mV/bit; little finger, 20.19 mV/bit; see Figure 3A). There-
fore, delay-period CSE of the cued muscle was lower when
preparatory cues resolved less uncertainty (entropy) and when
surprise induced by the preceding IS was large (Figure 3A).
Concomitant changes were seen in participant’s behavior
who generally responded more slowly when entropy was high
(167 ms/bit) and to surprising events (109 ms/bit).

We used Bayesian model comparison to compare different
explanations of the data. These comprised three types of
models. Firstly, we assumed that events were stationary and
unchanging within a block. This matched the true generative
distribution from which events (CS, IS) were sampled. In other
words all previous blocks were forgotten in an optimal way and
only trials within the current block were weighted equally. This
assumption is ideal in relation to the actual experimental
paradigm but assumes knowledge about the block structure
of events. Moreover, in a more general setting, contingencies
change slowly with a greater or lesser volatility [27]. We, there-
fore, included two alternative models based upon Bayesian
observers with suboptimal forgetting. The first involved no for-
getting and, so, included all trials over all blocks preceding the
current trial. This is suboptimal because contingencies in fact
changed from block to block. The second used only the four
most recent trials, which we refer to as ‘‘fast forgetting’’. Again
this is suboptimal because this observer fails to accumulate
evidence that is available within a block (see the Supplemental
Experimental Procedures and Figure S2).
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We used Bayesian model comparison to evaluate the evi-
dence for these models. The intuition here is that the probabil-
ity that data were generated by a model, i.e., the model evi-
dence, can be approximated by the marginal likelihood of
the data. This can be computed for two competing models
and their ratio used as a measure of evidence in favor of one
explanation, i.e., model. As model parameters are integrated
out in this procedure, the model evidence includes a complex-
ity term that penalizes models with more parameters, e.g.,
more columns in the design matrix in a general linear model.
We report the log of this ratio of probabilities so that positive
values >3 indicate evidence (20:1 odds) in favor of the model
containing entropy (Ĥ) and surprise (ı̂) [18]. As shown in
Figure 3B, the important result here is that in all cases, evi-
dence supported the model based on both entropy and sur-
prise given the CSE and RT data. In other words for both out-
come measures evidence was substantially larger for the
model of both entropy and surprise compared to either

Figure 2. Influence of Entropy and Surprise on

Reaction Times and Delay Period Corticospinal

Excitability

(A) CSE + SD for validly and invalidly cued trials

from all subjects, plotted against entropy (left)

and surprise (right). For display purposes data

from all subjects were binned in steps of 0.005

(entropy) and 0.025 (surprise) bits, respectively.

CSE was quantified from the peak-to-peak ampli-

tude of motor-evoked potentials (MEP), elicited

in the hand muscles contralateral to the TMS

stimulation site. CSE was generally higher when

uncertainty (entropy) was low, and trials were

preceded by surprising events.

(B) RTs + SD for validly and invalidly cued trials

plotted against entropy (left) and surprise (right).

For display purposes data from all subjects were

binned in steps of 0.005 (entropy) and 0.025 (sur-

prise) bits, respectively. Reaction times were

generally faster when uncertainty (entropy) and

surprise were low.

entropy (Ĥ) or surprise (ı̂) alone, a con-
ventional (ANOVA) model comprising in-
dicator variables identifying trial type,
a model without forgetting, or a model
with near maximal forgetting.

Our data suggest that the brain infers
the probabilistic context of events, given
past sensory information, in order to
optimize and guide voluntary action. Al-
though it has been suggested previously
that the output of the motor system is,
on average, influenced according to the
past experience of ongoing sensory
events [16], the present results show
that this interaction can be predicted
by using estimated quantities about un-
certainty among events. This finding
suggests that the brain tries to minimize
prediction error [28, 29] by taking into
account both the past history of events
and the most recent experience. The in-
fluence of each can be computed and
assigned with an information content
that is then continuously channeled

into motor regions to control the excitability of expected motor
outputs. This may help to overcome inherent delays and noise
in sensory feedback [1, 28], which inevitably slow response
times.

Understanding how anticipatory presetting in the motor sys-
tem is influenced by learning about, for example, the probabi-
listic context that currently guides our action requires formal
models of this updating. Here, we explicitly modeled entropy
and trial-by-trial surprise to predict preparatory set directly
from the probabilistic structure of sensory events. Variations
in delay-period CSE were indeed best explained by account-
ing for both entropy and surprise. Our analysis goes beyond
previous studies about the importance of average reaction
time [11–13, 30, 31] and CSE [15, 16] changes during prepara-
tion for action. These do not disclose whether CSE is reconfig-
ured by predictions about events on a trial-by-trial basis nor
reveal the relative contributions of entropy and surprise. We
show the influence of these variables on the motor system
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during preparation for action and the advantage of our compu-
tationally informed model over categorical predictors that are
not informed about the time-evolving estimates of probabilis-
tic context. In the present case we achieved this under the as-
sumption of an ideal observer. This approach provides a useful
framework with minimal assumptions within which context can
be modeled to predict corresponding changes in motor output
and behavior.

Recently, Yu and Dayan introduced a distinction between
expected and unexpected uncertainty [26]. Although these
are heuristic concepts from the point of view of information
theory, they can be associated with the distinction between
entropy and surprise. In this context surprise corresponds to
unexpected uncertainty that represents a violation of the ex-
pected uncertainty, represented by entropy. Moreover, had
we modeled optimum forgetting or volatility [27] in our ideal
Bayesian observer, unexpected uncertainty could be used to
optimize the degree of forgetting. Taken together, several
other modes of probabilistic context have been proposed
[26, 27, 32, 33] and may prove useful for the study of prepara-
tory delay period activity.

Figure 3. Modeling Results

(A) Model predictions given by the posterior densities (mean 6 SD) of

weights of regressors from the model containing entropy and surprise.

These represent a population effect (i.e., given data and a model over all

subjects). For example, for RTs, these encode response time per bit of infor-

mation presented to subjects. RTs (gray bars) increased with uncertainty, Ĥ,

and surprise, ı̂. Conversely, CSE (blue bars, little finger; red bars, thumb)

decreased with entropy and surprise. Responses for each muscle were

modeled for trials in which the corresponding imperative stimulus had

occurred.

(B) Model comparison. Bar-plot of the log-marginal likelihood ratio (i.e., ap-

proximate difference between the log evidence of two competing models)

was used to compare models. Importantly, this includes a model complexity

term. Positive values indicate more evidence for the model containing both

entropy and surprise, whereas negative values indicate more evidence for

one of the alternative models. For both outcome measures (RTs, gray;

CSE, blue [little finger]; red [thumb]), we found substantially more evidence

(ratio >3, indicated by the horizontal black lines) for the model accounting

for both uncertainty and surprise. Abbreviations: Ĥ, entropy; ı̂, surprise;

ANOVA, conventional model comprising indicator variables identifying trial

type; no forgetting (all trials over all blocks are taken into account); forget4,

near maximal forgetting (only the previous four trials are taken into account).
Previous neuroimaging work has suggested that entropy is
encoded in the anterior hippocampus [19]. In contrast a bilat-
eral parieto-fronto-thalamic network has been implicated in
encoding surprise [19, 34]. The present results suggest that
predictions about events based on both these variables can
modulate the voluntary motor system on a trial-by-trial basis.
Furthermore, the present findings show how measurements
of corticospinal excitability with TMS can provide a window
to examine computational processes about how humans im-
plement decisions in real time. We conclude that motor output
is flexibly shaped by contextual probabilities that are learned
and represented dynamically in the brain.

Experimental Procedures

Participants

13 healthy right-handed volunteers (five females ages 27 6 3.3 years) partic-

ipated in the study. They received £10/hr monetary compensation for their

participation. All participants had normal or corrected-to-normal visual acu-

ity and reported no history of neuropsychiatric illness. Experiments were

conducted according to the Declaration of Helsinki, with local ethics ap-

proval and informed consent. None of the participants reported any side ef-

fects of the experimental procedures. Participants were seated in a comfort-

able reclining chair with a mounted chin rest and nose bridge, which helped

maintain head position. Three participants were excluded from analysis

because of an excessive number of error trials (23.8%, 26.3%, and 33.4%,

respectively).

Behavioral Task

Participants performed an instructed delay task in which an arbitrary CS

(green upward triangle or red ellipsoid) was followed by an IS (green upward

triangle or red ellipsoid) presented approximately 1000 ms later (Figure 1A).

The CS and IS were arbitrarily assigned to a right thumb or right little-finger

button press, respectively, prior to the experiment. This stimulus-response

mapping was balanced across participants. Instructions were given to

respond as quickly and accurately as possible upon appearance of the IS.

No performance feedback was given and participants were instructed to

relax their hand muscles until the IS had been presented. Participants

performed one practice block (105 trials) to ensure learning of the arbitrary

stimulus-response mapping prior to the main experiment (see also the Sup-

plemental Data). During the practice block the CS predicted the IS (and,

hence, the required motor response) with 85% validity, and response feed-

back was provided. After this another practice block (105 trials) with TMS

applied to the left M1 hand region was performed to ensure participants

could perform the task comfortably in the presence of TMS. After a brief

pause at the end of each block, the instructions were repeated.

In the main experiment the true CS validity varied across six blocks of

105 trials. Critically, the number of validly and invalidly cued trials in each

block varied randomly across the experiment, containing either 85%:15%,

70%:30%, and 55%:45% of valid-invalid trials, respectively. The predictabil-

ity of motor responses was, therefore, not simply stimulus bound but

depended on the context established by preceding trials. Note that there

was no underlying sequence governing stimulus presentation, only the rela-

tive proportions of stimuli were varied from block to block. No information

about the underlying change in cue validity was given to participants at

any time. Each validity condition was repeated twice in pseudorandom order

(precluding back-to-back repetition of block types). The CS provided low,

medium, or high uncertainty about which movement to make. Although the

predictability of the required movement (based on the CS) was varied be-

tween blocks, each movement (thumb or little finger) was cued equally as of-

ten. The CS, therefore, validly (validly cued thumb, validly cued little finger) or

invalidly (invalidly cued thumb, invalidly cued little finger) cued the required

movement. After each block, a short pause of approximately 2 min was given.

By using single TMS pulses to the contralateral hand representation of left

M1, CSE was probed 200 ms (616 ms timing uncertainty) before the IS sig-

naled which movement had to be performed (Figure 1A). This allowed us to

assess the CSE in our subjects [35] before an overt movement was executed

[15, 16]. Note that TMS was used to quantify CSE during the delay period

[15, 16] before subjects knew which action they were going to make; it

was not used to perturb their responses (as in virtual lesion studies). Al-

though TMS pulses provided highly salient cues with respect to the time

of IS presentation, they were entirely noninformative regarding its identity.
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Presentation of visual stimuli and synchronization with TMS was imple-

mented by using MATLAB (The MathWorks, Natick, MA) custom stimulus

presentation toolbox (http://www.vislab.ucl.ac.uk/Cogent2000/index.html).

Data Analysis

Reaction times were calculated as the time between IS onset and the sub-

sequent button press. Peak-to-peak MEP amplitudes were measured by

using in-house software. Baseline EMG activity was calculated for each trial

from the period between 2500 and 2200 ms prior to IS presentation. Trials

were labeled as error trials with the following criteria: (1) RT of 80 ms or less,

(2) omitted responses, (3) outlier RT and MEP responses as identified using

Grubbs test (a = 0.05), and (4) baseline EMG activity exceeding 100 mV for

more than 50 ms. Error trials (13.38% in total) were entered into the main

modeling analysis as covariates of no interest. Repeated-measures ANOVA

with factors trial type (thumb valid/invalid, little finger valid/invalid) and

block type (85:15%, 70:30%, 55:45%) were used to assess their effect on

RTs and MEPs.

Computing Entropy and Surprise

In the text that follows we describe how to estimate the conditional proba-

bilities needed to compute entropy (i.e., uncertainty) and surprise (see the

Supplemental Experimental Procedures).

Multinomial and Dirichlet distributions

The notation here follows that used in [36]. Consider a discrete variable x

that can take values from 1 to K. In our paradigm each trial comprises two

stimuli, CS and IS, that induce four events: thumb validly cued, thumb inva-

lidly cued, little finger validly cued, and little finger invalidly cued (i.e., K = 4).

The vector p = ½p1;.pK � parameterizes probability distributions on x, where

Pðx = kÞ= pk*PðxjpÞ=
YK

k = 1

pdðx = kÞ
k ; (1)

and dðx = kÞ is an indicator function. This is a multinomial distribution where

pk is the probability of each outcome pair or their joint probability, pij, where

i and j denote the IS and CS, respectively. The conditional probability of the

i-th IS, given the j-th CS, is represented by pij j = PðIS = ijCS = jÞ and relates

to the joint distribution as follows:

p1 = PðIS = thumb;CS = thumbÞ
p2 = PðIS = finger;CS = thumbÞ
p3 = PðIS = thumb;CS = fingerÞ
p4 = PðIS = finger;CS = fingerÞ

0

pthumbjthumb = p1=ðp1 + p2Þ
pfingerjthumb = p2=ðp1 + p2Þ
pthumbjfinger = p3=ðp3 + p4Þ
pfingerjfinger = p4=ðp3 + p4Þ

: (2)

Given pij j we can compute the surprise about the imperative stimulus IS

given the CS

iðIS = ijCS = jÞ= 2 log2 pij j: (3)

Similarly, for each trial the conditional uncertainty, or entropy, about IS,

given CS is simply

HðISjCS = jÞ= 2
X

i

pij j log2 pij j : (4)

Entropy is a scalar quantity that reflects the average uncertainty about an

event sampled from all possible events, whereas the surprise relates to the

probability of a specific event and, so, is an observation-bound scalar quan-

tity [18, 19] (Figure 1B).

These provide subject-specific explanatory variables (surprise, entropy)

used in a hierarchical general linear model (GLM) whose parameters were

optimized by using an empirical Bayes procedure (see the Supplemental

Experimental Procedures). In this analysis we discarded any information

about block-type (which the subjects did not have access to) but updated

entropy and surprise on a trial-by-trial basis, based on what the subject

actually observed (see Figure 1B and the Supplemental Experimental

Procedures for details).

Note that the effects of surprise on RT pertained to the surprise of the im-

perative stimulus eliciting the response. In contrast, for the CSE data, given

that the surprise of the IS cannot affect CSE in the same trial (because it was

measured before the IS occurred), we used the surprise from the preceding

trial.

Supplemental Data

Supplemental Experimental Procedures and two figures are available at

http://www.current-biology.com/cgi/content/full/18/10/775/DC1/.
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