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SUMMARY

Human ventrolateral frontal cortex (vlFC) is identified
with cognitive processes such as language and
cognitive flexibility. The relationship between it and
the vlFCof other primateshas thereforebeen the sub-
ject of particular speculation.We used a combination
of structural and functional neuroimaging methods
to identify key components of human vlFC. We
compared how vlFC areas interactedwith other brain
areas in 25 humans and 25macaques using the same
methods. We identified a core set of 11 vlFC compo-
nents that interacted in similar ways with similar
distributed circuits in both species and, in addition,
one distinctively human component in ventrolateral
frontal pole. Fundamental differences in interactions
with posterior auditory association areas in the two
species were also present—these were ubiquitous
throughout posterior human vlFC but channeled
to different frontal regions in monkeys. Finally, there
were some differences in interregional interactions
within vlFC in the two species.

INTRODUCTION

The vlFC is identified with cognitive processes pre-eminent

in humans such as language and cognitive flexibility. Broca’s

area is a part of left vlFC and is associated with language (Frie-

derici and Gierhan, 2013), while other vlFC areas, sometimes in

the right hemisphere, have been linked to cognitive control—

high-level top-down control of behavior—by influencing pro-

cessing in other brain regions (Aron, 2007; Brass et al., 2005;

Dosenbach et al., 2006; Higo et al., 2011; Neubert et al., 2010).

Despite vlFC’s identification with such aspects of human

cognition, key features of its neuroanatomy, such as cytoarchi-

tecture, seem homologous in human and nonhuman primates

such as the macaque (Petrides and Pandya, 2002). Apparent

homology in neuroanatomy is puzzling when macaques lack

cognitive skills that humans possess. There is evidence that

macaque vlFC is involved in auditory processing (Romanski,

2012), orofacial motor control (Petrides et al., 2005), and gesture
700 Neuron 81, 700–713, February 5, 2014 ª2014 Elsevier Inc.
recognition (Rizzolatti and Sinigaglia, 2010), which might relate

to processes necessary for language. However, emphasis has

also been placed on macaque vlFC’s role in multimodal sensory

integration (Passingham and Wise, 2012; Romanski, 2012), the

selection of environmental features for attention, and their

subsequent use to guide flexible decision making and action

selection (Passingham and Wise, 2012). How the macaque

brain areas responsible for these processes relate to areas

in human vlFC areas implicated in attention and task control

remains uncertain.

An alternative hypothesis is that there are new areas in human

vlFC that support uniquely human cognitive abilities. A recent

cytoarchitectonic and receptor-density-based investigation

identified previously unreported vlFC regions in locations associ-

ated with language and cognitive control (Amunts et al., 2010).

It is possible that no corresponding regions exist in monkeys

but no test has been conducted. Alternatively, another aspect

of vlFC may differ between species—the interactions that re-

gions have with each other and with the rest of the brain. Such

interconnections and interactions determine the information

that brain regions have access to and the influence they exert.

In the current study we used diffusion-weighted MRI (DW-

MRI) parcellation techniques to test the former hypothesis: the

potential existence of new areas in humans. DW-MRI identifies

areas corresponding in position and extent to those identified

by histological examination (Mars et al., 2011). Another noninva-

sive MRI-based technique, resting-state fMRI, was used to

explore the latter hypothesis—that there are interspecies differ-

ences in the functional networks vlFC participates in (‘‘functional

connectivity’’ [Bullmore and Sporns, 2009]). Functionally con-

nected networks observed at rest often overlap with networks

observed during performance of cognitive tasks (Power et al.,

2011). Such interregional coupling patterns often partly reflect

anatomical connectivity (O’Reilly et al., 2013). Previous studies

have shown that dorsal prefrontal and parietal cortex participate

in similar networks in macaques and humans (Margulies et al.,

2009; Mars et al., 2011; Sallet et al., 2013; Vincent et al., 2007).

Here we tested whether this is true in vlFC.

RESULTS

The first goal was to identify component parts of the entire

human ventrolateral prefrontal cortex (Figure 1A). There has
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Figure 1. Overall Approach of the Study

We used DW-MRI-based tractography in 25 human participants to divide vlFC ROI (A) into regions with consistent connectivity profiles with the rest of the brain.

Probabilistic tractography was performed from each voxel in the ROI and yielded a connectivity matrix between all VLFC voxels and each brain voxel for each

participant (25 connectivity matrices, four example connectivity matrices in B). These matrices were then used to generate a symmetric cross-correlation matrix,

which was then permuted using k-means segmentation for automated clustering to define different clusters (yielding 25 clustered cross-correlation matrices, C).

Theseclusterswereprojectedbackonto the individualparticipant’sbrainandoverlayedonto theMNI152standardbrain (D). fMRIanalyses in thesame25participants

determined functionalconnectivity between thesedistinct vlFC regionsand the rest of thebrain (example functionalconnectivity pattern for IFJ inblue inE).We related

the functionalconnectivity fingerprints (F) of thedifferent vlFC regions to the resting-state fMRI-basedconnectivity profiles fromdifferent cytoarchitectonically defined

areas in vlFC in 25 macaques (cytoarchitectonically defined macaque’s area 44, D0, and respective functional connectivity pattern, E0).
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recently been interest in the existence of specialized brain

areas near the border between ventrolateral prefrontal and

ventral premotor cortex (PMv). To ensure the possibility of

investigating them in our study, we took care to include PMv

as well as ventrolateral prefrontal cortex within the vlFC region

of interest (ROI; see Figure 2A). Posteriorly, we delimited the

ROI by the posterior end of the precentral gyrus to include

the crown of the precentral gyrus but not the rostral bank of

the central sulcus. Posterior to the posterior end of the inferior

frontal sulcus, the ROI was dorsally delimited by what had pre-

viously been established to be the border between PMv and

dorsal premotor cortex (PMd) (Tomassini et al., 2007). In addi-

tion to PMv, we also examined all areas in the pars opercularis,

pars trianguris, and pars orbitalis of the inferior frontal gyrus,

the whole of the inferior frontal sulcus, and the deep frontal

operculum. Hence our ROI was delimited dorsally by the fusion

of the middle frontal gyrus and the inferior frontal sulcus to

include the whole inferior frontal sulcus. More anteriorly, we
included all the tissue ventral to a line extending anteriorly

from the anterior tip of the inferior frontal sulcus to the most

anterior point in the brain. This line ran along the surface of

the brain approximately in the axial plane in the standard Mon-

treal Neurological Institute (MNI) coordinate system. Thereby,

we probably included part of the frontal pole in this most ante-

rior area, and for reasons of completeness we also included a

more dorsal region into our ROI identified as frontal pole by

Sallet et al. (2013). The ROI included both medial and lateral

frontal pole and was medially delimited by the paracingulate

sulcus. Ventromedially, the ROI was delimited by the lateral

orbital sulcus and more posteriorly at the level of the deep fron-

tal operculum by the circular sulcus. The ROI could be defined

in an unbiased and easily reproducible way in all subjects

by using the automated gray matter-white matter segmenta-

tion tool FAST v4.1 (FMRIB’s Automated Segmentation Tool)

(Zhang et al., 2001) on the MNI standard brain template

(MNI_152 template) in combination with these gross anatomical
Neuron 81, 700–713, February 5, 2014 ª2014 Elsevier Inc. 701



Figure 2. Human vlFCRegion of Interest and

Parcellation Solution

(A) The right vlFC ROI. Dorsally it included the

inferior frontal sulcus and, more posteriorly, it

included PMv; anteriorly it was bound by the par-

acingulate sulcus and ventrally by the lateral orbital

sulcus and the border between the dorsal insula

and the opercular cortex.

(B) A schematic depiction of the result of the 12

cluster parcellation solution using an iterative

parcellation approach. We subdivided PMv into

ventral and dorsal regions (6v and 6r, purple and

black). We delineated the IFJ area (blue) and areas

44d (gray) and 44v (red) in lateral pars opercularis.

More anteriorly, we delineated areas 45 (orange) in

the pars triangularis and adjacent operculum and

IFS (green) in the inferior frontal sulcus and dorsal

pars triangularis. We found area 12/47 in the pars

orbitalis (light blue) and area Op (yellow) in the

deep frontal operculum. We also identified area 46

(bright yellow), and lateral and medial frontal pole

regions (FPl and FPm, ruby colored and pink). See

also Figures S1–S3 and S5.
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landmarks. This standard-space ROI was then registered to

each individual brain using nonlinear registration (FMRIB’s

Nonlinear Image Registration Tool [FNIRT]).

Because of potential differences between right and left vlFC,

we carried out parallel investigations of both regions defined

by the same anatomical criteria. However, we judged results to

be similar enough to focus on right vlFC and to present left

vlFC results only in the Supplemental Information.

To identify component vlFC regions, we used DW-MRI-based

tractography in 25 healthy human participants. We estimated the

connections of every vlFC voxel in each subject (Behrens et al.,

2007) (Figure 1B). The parcellation approach identifies voxels

within vlFC (Figure 1A) with similar estimated profiles of connec-

tivity with the rest of the brain. The connectivity matrix (Figure 1B)

is used to generate a symmetric cross-correlationmatrix (Johan-

sen-Berg et al., 2004) reflecting the correlation in connectivity

pattern between all vlFC voxels. This cross-correlation matrix

is then regrouped using K-means clustering (Figure 1C) to iden-

tify voxels sharing connectivity profiles (Beckmann et al., 2009;

Mars et al., 2011). The spatial locations of the voxels in each

parcel are then established; voxels cluster into anatomically

coherent parcels (Figure 1D).

With the correct number of regions in human vlFC being un-

known, we carried out a series of parcellations into two to 25 re-

gions. The parcellation into ten distinct regions was particularly

consistent across subjects and showed the smallest variance

of the average cross-correlation, suggesting that it is the most

coherent clustering into similarly correlated clusters (Supple-

mental Experimental Procedures 2 discusses determination of

regions). Similar ten-cluster parcellations were obtained in both

left and right hemispheres. This specific parcellation solution of

ten different regions was further corroborated with a second se-

ries of parcellations using an iterative procedure (Supplemental

Experimental Procedures 4) similar to the approach used by

Beckmann et al. (2009). This iterative parcellation procedure
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yielded similar ten cluster results. Each of these ten regions

was subsequently subjected to further subparcellation to test

whether a more detailed parcellation of vlFC could be obtained.

Two of the ten vlFC regions could reliably be parcellated further

into two regions. Therefore, in summary, we identified 12 similar

vlFC regions in all our human subjects.

The names given to each vlFC region need to be considered

with caution. One strategy is to avoid naming areas, but we

found this approach renders our findings difficult to communi-

cate. Instead, we used names largely based on cross-species

similarities in the areas’ connectivity profiles. In several, but not

all cases, they can be related to previous cytoarchitectonic

and receptor-density-based parcellation schemes (Amunts

et al., 2010).

After parcellation, we used fMRI from the same 25 humans to

determine functional connectivity profiles for each vlFC region.

We took the BOLD signal from each area and established which

other voxels had correlated BOLD time courses (Figure 1E

shows the example case of areas where the BOLD signal was

correlated with the inferior frontal junction [IFJ] BOLD signal).

We then summarized each vlFC area’s pattern of coupling in a

spider plot (Figure 1F). The spider plot shows the relative degree

of coupling between each vlFC area and a set of target regions.

These target regions were chosen because they are thought, on

the basis of anatomical and functional evidence, to correspond

between humans and macaques and because different vlFC

areas were expected to have diagnostically different coupling

patterns with different sets of these target regions. Similar

spider plots were calculated for a set of macaque vlFC regions

(Figure 1D0) and the corresponding target areas in other parts

of the brain (Figure 1E0). Finally (Figure 1F), we compared the

dissimilarity or ‘‘distance’’ between each human frontal area’s

coupling fingerprint and the coupling fingerprint associated

with each frontal area of the macaque (Mars et al., 2013; Sallet

et al., 2013).



Figure 3. Human vlFC Parcellation Solution

Six coronal and six axial slices through the MNI152 standard brain as provided by FSL with the 12 vlFC subregions obtained by the tractography-based

parcellation overlayed. The z and y coordinates for the respective slices are depicted next to the gray axes, which show the approximate location these slices

were taken from.
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Regions in Ventral Premotor Cortex
The human precentral gyrus territory overlapping with PMv

(Tomassini et al., 2007) was subdivided into dorsal and ventral

regions (brown and black, Figures 2B and 3; Supplemental

Experimental Procedures 3) with centers of gravity at [x = 51,

y = 1, z = 33] and [48, 5, 12] in MNI standard space, respectively.

Given their topographical location, these areas probably corre-

spond to the cytoarchitectonically defined agranular 6v and

dysgranular 6r areas, although the ventral region extended into

the operculum and therefore probably included parts of op6

(Amunts et al., 2010).

Human 6v and 6r (Figure 4) were similar in their functional con-

nectivity. Both showed strong coupling to motor cortex, primary

somatosensory cortex (S1), supplementary motor area (SMA),

cingulate motor areas (CMAs), and PMd. Area 6r had stronger

couplingwith visuomotor areas including 7m, intraparietal sulcus

(IPS), and anterior inferior parietal lobule (IPL), whereas 6v had

stronger coupling with somatosensory regions, such as S1 and

anterior parietal operculum, and with PMd. Neither coupled

with inferior temporal lobe, suggesting that their visual informa-

tion is mainly derived from parietal cortex.

There has been speculation about potential similarities of

these regions in humans and macaques (Amunts et al., 2010;

Belmalih et al., 2009; Rizzolatti and Sinigaglia, 2010). We found

that functional connectivity patterns of macaque areas F5c and
F5a resembled those of human areas 6v and 6r, respectively,

and so below we refer to them collectively as 6v/F5c and 6r/F5a.

Pars Opercularis and Inferior Frontal Junction
We identified four subdivisions directly anterior to the precentral

gyrus. The first occupied the posterior inferior frontal sulcus at its

junction with the precentral sulcus (blue, Figure 2B) and had a

center of gravity at [41, 12, 25]. This subdivision overlaps with

the territory that has been called IFJ (Brass et al., 2005). Although

our analyses demonstrated that IFJ can be reliably distinguished

from adjacent vlFC areas, it remained a possibility that our IFJ re-

gion was not truly a separate region but just the most ventral

extension of a more dorsal frontal area such as area 8A. To

test this possibility, we created an ROI composed of IFJ and of

area 8A (as defined by Sallet and colleagues, 2013) and sub-

jected it to further parcellation attempts. In all subjects, we found

that this larger ROI could be parcellated into two regions corre-

sponding to IFJ and to area 8A, suggesting that the two areas are

distinct (Figure S5).

Another more ventral region was located in lateral pars

opercularis with a center of gravity at [41, 19, 10]. It posteriorly

bordered F5a/6r. It therefore probably corresponds to area 44

(Amunts et al., 2010). Unlike almost all other areas that we inves-

tigated, we found that this area could be reliably subparcellated

into dorsal and ventral subcomponents with centers of gravity at
Neuron 81, 700–713, February 5, 2014 ª2014 Elsevier Inc. 703



Figure 4. Regions in Ventral Premotor Cortex

Resting-state fMRI-derived functional connectivity patterns of human (left) areas 6v (black) and 6r (brown), which resemble those of macaque (right) areas F5c

(black) and F5a (brown). In the middle, we show the intensities of these human andmacaque resting-state fMRI-derived functional coupling patterns in a selected

number of target ROIs that can be easily matched between the two species plotted on a spider plot. These spider plots were used to match human and monkey

vlFC subregions. See also Figures S4 and S6.
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[45, 23, 19] and [39, 20, 10] in all subjects. On the basis of their

location, we suggest that they correspond to 44v and 44d

(Amunts et al., 2010), although 44v extended into the operculum

and therefore probably included parts of op8.

A fourth region was established in the middle section of the

inferior frontal sulcus at [43, 32, 15] (green, Figure 2B). It

bordered IFJ and 44d posteriorly, area 46 anteriorly, 44v inferi-

orly, and area 45 in the pars triangularis. This region is located

in a similar region to the inferior frontal sulcus regions IFS1 and

IFS2 (Amunts et al., 2010), and so we refer to it here as IFS.

Although our analyses demonstrated that IFS can be distin-

guished from other vlFC areas, it is still possible that IFS is not

a truly separate region but just the most ventral part of a dorsal

frontal cortical area such as area 9/46v. To test this possibility,

we created an ROI composed of IFS and of area 9/46v (as

defined by Sallet and colleagues, 2013) and subjected it to

further parcellation attempts. In all subjects we found that this

larger ROI could be parcellated into two regions corresponding

to IFS and area 9/46v, suggesting that the two areas are distinct.

We were not, however, able to reliably subdivide IFS into smaller

component areas (Figure S4).

Examination of functional coupling suggested two important

differences in the networks in which these four more anterior re-

gions IFJ, 44d, 44v, and IFS participated, which contrasted with

F5c/6v and F5a/6r network patterns. A related pattern of differ-

ences was found inmacaque vlFC (Figure 5). Although all four re-

gions remained coupled with F5c/6v and F5a/6r, they were also

coupled with, first, a number of dorsolateral prefrontal areas and,

second, visual association areas in occipitotemporal cortex.
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Although the occipitotemporal areas do not appear in the spi-

der plots in Figure 5, this coupling pattern is apparent in the rest

of Figure 5. Occipitotemporal areas are absent from the spider

plots because the spider plots focused on regions for which

there is clear evidence of human-macaque correspondence

(see Experimental Procedures and Table S3 for detailed account

and references to cross-species homology of spider plot target

areas); obviously, it is only the coupling with such areas that

can be used to precisely decide how similar a vlFC area’s func-

tional network is in the two species, but such correspondences

remain uncertain in occipitotemporal cortex. In macaque, these

areas included V4, TEO, TE, and TPO.

The coupling of IFJ in humans suggests it occupies a transi-

tional location between premotor and prefrontal cortex, distin-

guishing it from the more caudal premotor cortex that has little

coupling with prefrontal cortex. To date, there has been no direct

comparison of these human precentral subdivisions and areas in

the macaque using the same technique. We found that a ma-

caque vlFC region could be identified with a similar coupling pro-

file—area 44 in the fundus of the inferior limb of arcuate sulcus. In

contrast, the pattern of coupling of human 44v, with compara-

tively little interaction with parietal cortex, most closely resem-

bled that of macaque area ProM. The coupling pattern of region

44d, which sits in between IFJ and 44v, bore broad similarities

with the coupling pattern of IFJ. So we suggest that this region,

like IFJ, may correspond to area 44 in the macaque. Neverthe-

less, it was notable that some aspects of 44d’s coupling pattern

were also reminiscent of 44v. Finally, the functional connectivity

profile of human IFS resembled that of macaque area 45B.



Figure 5. Pars Opercularis, Inferior Frontal Junction, and Inferior Frontal Sulcus

Resting-state fMRI-derived functional connectivity patterns of human areas IFS (green), IFJ (blue), 44d (green-gray), and 44v (red) and resting-state fMRI-derived

functional coupling patterns of the proposed corresponding areas in macaque: areas 45B (green), 44 (blue), and ProM (red). Human area 44d resembled both

macaque area 44 and ProM. In the middle, we show spider plots of these regions. Conventions are as in Figure 2. See also Figure S10.
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The same cognitive control and language processes have

been associated with both IFJ and 44v (Aron, 2007; Brass

et al., 2005; Friederici and Gierhan, 2013), but our parcellation

and functional connectivity results suggest that they have quite

separate identities. To better understand the subdivisions we

identified here, we related the functional coupling patterns of

IFJ, 44v, and 45 (see below)—three regions that have particularly

been implicated in language and cognitive control—to meta-
analysis and derived coactivation patterns for several different

cognitive tasks (Supplemental Experimental Procedures 6 and

Figure S9a). Consistent with their different coupling profile, the

meta-analysis suggested that these regions were associated

with quite different functional roles, with area 44v involved in

lower-level control processes seen in typical inhibition tasks

such the go/no-go task and IFJ involved in higher-level

processes such as task switching. Another region sometimes
Neuron 81, 700–713, February 5, 2014 ª2014 Elsevier Inc. 705



Figure 6. Pars Triangularis and Orbitalis

Resting-state fMRI-derived functional connectivity patterns of human areas 45 (orange), 12/47 (light blue), and Op (light yellow), and resting-state fMRI-derived

functional connectivity patterns of the proposed corresponding areas inmacaque (right): areas 45A (orange), 12/47 (light blue), andOp (light yellow). In themiddle,

we show spider plots of these regions. Conventions are as in Figure 2.
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associated with inhibitory processes, area 45, was not associ-

ated with either of these functions but was rather implicated in

social and language processes. Thus, the distinct coupling pat-

terns of the human IFJ, 44v, and 45 accord with the distinct roles

they play in language and cognitive control.

Pars Triangularis and Orbitalis
A more anterior vlFC region covered much of pars triangularis

and the adjacent operculum with a center of gravity at [38,

29,�1] (orange, Figure 2). This subdivision seems to partly over-

lap with territory previously identified as 45 (Anwander et al.,

2007) or, perhaps more precisely, 45A. We subsequently call

this area 45 although it does not perfectly overlap with BA45

as defined by (Amunts et al., 1999). However, its location with

respect to the other areas and its coupling pattern (see below)

resemble area 45 (Petrides and Pandya, 2009). Another area

was found in pars orbitalis and adjacent deep frontal operculum.

This region is the second one in which it was possible to conduct

further subparcellation into areas that had a consistent location

in all subjects. One area was located on the gyrus of the pars
706 Neuron 81, 700–713, February 5, 2014 ª2014 Elsevier Inc.
orbitalis (cyan, Figure 2) with a center of gravity at [42, 34, �7]

and therefore probably corresponds to area 47 or 47/12 (Pet-

rides and Pandya, 2002), while the other area was in the deep

frontal operculum with a center of gravity at [31, 26, �15] (bright

yellow in Figure 2). This area is adjacent to areas that Amunts and

colleagues (2010) refer to as Op9 and Op10 and partly overlaps

with a region referred to as the frontal operculum by Higo et al.

(2011). We use ‘‘Op’’ when referring to it in our human subjects.

In their functional coupling profiles, human area 45 and 47/12

most closely resembled macaque 45A and 47/12, respectively.

Functional coupling patterns of human and macaque areas 45/

45A and 47/12 shared common features such as coupling with

other prefrontal areas and with temporal areas (Figure 6). In

this they resembled the immediately posterior regions (IFJ/44d

[human]/44 [macaque] and 44v/ProM). However, there was little

evidence of coupling with action selection regions in parietal and

premotor cortex. Themain difference between 45 and 47/12 was

that the latter was more closely linked to anterior parts of both

temporal and prefrontal cortex in both species. The functional

coupling profile of human Op most resembled the functional



Figure 7. Human-Macaque Differences in

Posterior Temporal Cortex Connectivity

fMRI-derived functional connectivity of a posterior

auditory association area in the human and

macaque (area Tpt) with region vlFC areas (A) and

cingulate cortex (B). Graphs show the ranking of

functional connectivity with the vlFC and cingulate

areas in macaques and humans among all ROIs

presented in spider plots in Figures 4, 5, and 6. The

average intensity in the respective ROI from the

seed-based correlation analysis z maps was rank

ordered from lowest to highest values (i.e., high

ranks reflect strong functional coupling) in two

separate ranking analyses (one for auditory-vlFC

coupling strength and a second for auditory-

cingulate coupling strength). Asterisks mark

significant between-species differences (Mann

Whitney Wilcoxon rank-sum test; p < 0.05). See

also Figures S7–S9.
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coupling profile of the lateral agranular insula (Ial and Iapl in Car-

michael and Price, 1994) in the macaque. Both human Op and

macaque Ia were coupled with inferior and superior temporal

cortex, perirhinal cortex and temporal pole, amygdala, and ante-

rior dorsomedial frontal cortex.

Human-Macaque Differences in Posterior Temporal
Cortex and Intrinsic vlFC Connectivity
Thus far, we have reported striking similarities between species.

In both species, posterior ventral frontal cortex is coupled with

sensorimotor regions important for action selection, while ante-

rior vlFC is coupled with temporal visual association cortex.

Such a combination suggests that, in both species, vlFC is well

placed to categorize, select, and determine the flexible and often

context-dependent influence visual representations have over

decisionmaking and action selection. Despite evidence for these

similarities, we also observed major differences, most promi-

nently in coupling with auditory areas. In humans, there was

coupling between auditory association areas in posterior supe-

rior temporal cortex and many vlFC areas (Figure 7, Figures S6

and S7). This coupling was not limited to areas traditionally impli-

cated in language but was apparent throughout 6v, 6r, 44v, IFJ,

44d, 45, and IFS. In macaques, this coupling was meager.

It might be argued that for some reason our scanning

acquisition or analysis procedures were insensitive to long-

range coupling between auditory association cortex and frontal

lobes in macaques. This, however, cannot be the case, as we

identified coupling of the same macaque posterior auditory

association regions with medial prefrontal and anterior cingulate

cortex (ACC) regions that are concerned with social interac-

tion (Chang et al., 2013; Rudebeck et al., 2006) (Figure 7).
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In fact, there is a ‘‘double dissociation’’

in posterior superior temporal-frontal

lobe coupling in the two species; in

macaques, posterior superior temporal

coupling was strongest with medial fron-

tal cortex, while in humans it was stron-

gest with vlFC.
We also looked at vlFC intrinsic functional coupling to estab-

lish whether there was any between-species difference in the

coupling of regions within vlFC (see Figure S8 and Supplemental

Experimental Procedures 8). We noted less coupling between

the two regions situated in PMv (6v/F5c–6r/F5a) for the human

as compared to the macaque. We also found less coupling be-

tween 6r/F5a and 44v/ProM in human compared to macaques.

However, we found stronger coupling between 44v and IFJ in

the human compared to ProM and 44 in the macaque. We also

found stronger coupling for 45B/IFS with 45, 45 with 47, and

44v/ProM with 46 in the human compared to the corresponding

areas in themacaque (see Figure S8with Figure S8A showing the

functional coupling in human vlFC; white asterisks indicate

significantly less and black asterisks significantly more func-

tional coupling in human as compared tomacaque). In summary,

interregional coupling within prefrontal areas appeared stronger

in humans than macaques, but the opposite was true for ventral

premotor areas.

Areas in the Anterior Prefrontal Cortex
Three areas were identified in anterior human prefrontal cortex.

One, on the edge of the investigated region, was actually

in dorsolateral prefrontal cortex and corresponds to area 46

(yellow, Figure 2), with a center of gravity at [33, 47, 13], and

has also been described elsewhere (Sallet et al., 2013). Two

areas were delineated in the frontal pole (ruby and pink, Figure 2)

with centers of gravity at [13, 59, 2] and [26, 54, 0]. We refer to

them as medial and lateral frontal pole (FPm and FPl).

Humanarea46matchedmacaquearea46 in its functional con-

nectivity. Like other vlFC areas, both were coupled with the fron-

tal-parietal networks but the coupling was more limited in this
, February 5, 2014 ª2014 Elsevier Inc. 707



Figure 8. Areas in the Anterior Prefrontal Cortex

Resting-state fMRI-derived functional connectivity patterns of human (left) areas 46 (yellow), FPl (ruby), and FPm (pink), and resting-state fMRI-derived functional

connectivity patterns of the proposed macaque correspondents (right): area 46 (yellow) and area 10 m (pink). Area FPl could not easily be matched to any

macaque vlFC region but had some features of area 46. In the middle, we show spider plots of these regions. Conventions are as in Figure 2.
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case. For example, in both humans and macaques, parietal

coupling was strongest in IPL as opposed to IPS. The functional

connectivity patterns of FPm and FPl (Figure 8) are distinct and

only FPm corresponded in direct and simple ways to a macaque

prefrontal brain region—the macaque’s frontal pole region 10—

while FPl did not. In both humans and macaques, FPm/10 were

dramatically different to area 46 in that they showed little coupling

with parietal cortex but instead, and unlike 46, they coupled with

temporal pole, posterior cingulate cortex, and amygdala. These

clear differences in coupling patterns of FPm/10 and 46 resemble

differences in their connection patterns known from track-tracing

experiments (Petrides and Pandya, 2007).

The coupling pattern of FPl bore little resemblance with that of

FPm/10 but it rather partly resembled that of area 46; like area 46

it was coupled with IPL, and unlike FPm/10 it was not coupled

with amygdala or temporal pole. However, FPl’s coupling pattern

was not identical to that of area 46; its IPL coupling was much

more restricted than area 46’s and indeedmost of PFl’s coupling

was just with other prefrontal regions. In summary, human pre-
708 Neuron 81, 700–713, February 5, 2014 ª2014 Elsevier Inc.
frontal cortex contains a region, FPl, that lacks simple corre-

spondence with any in macaque prefrontal cortex. FPl does

not show those coupling patterns that are usually distinctive

features of FP cortex, but it instead exhibits coupling patterns

reminiscent of dorsolateral prefrontal cortex.

DISCUSSION

We identified fundamental similarities but also striking differ-

ences between monkeys and humans in the way vlFC regions

link with the rest of the brain. We discuss these results in four

parts, focusing briefly on (1) PMv, then (2) posterior vlFC areas

associated with cognitive control, (3) vlFC areas and their

hypothesized role in language processing in humans, and (4)

areas in the most anterior part of the prefrontal cortex.

Ventral Premotor Cortex
Previous studies have dissociated PMd from PMv using DWI-

tractography-based estimates of connectivity (Tomassini et al.,



Neuron

Human and Monkey Ventrolateral Frontal Cortex
2007). Here we show further dissociation between superior and

inferior regions within human PMv that we refer to as 6v and 6r.

A related distinction has also been proposed by Schubotz et al.

(2010). These areas’ functional connectivity patterns resemble

those of macaque areas F5c and F5a, respectively. There was

functional coupling between both areas in both species and

couplingwith anterior intraparietal area (AIP), pre-SMA, andparts

of ventral prefrontal cortex. Connections between these areas

have previously been reported in tracer injection studies (Borra

et al., 2011; Luppino et al., 1999). Further subdivision of area

6v, which lies on the edge of the ROI we investigated, may be

possible; the existence of coupling between 6v and ventral intra-

parietal area (VIP) and SMA resembled the anatomical connec-

tions of macaque area F4 that are known to exist (Luppino

et al., 1999).

Macaque F5 hosts ‘‘canonical neurons’’ encoding specific

object-oriented action plans and affordances as well as ‘‘mirror

neurons’’ that are active both when monkeys perform object-ori-

ented actions andwhen they observe the same actions (Belmalih

et al., 2009). More posterior F5c may represent actions per-

formed in a context-dependent way, while F5amay code actions

at a more abstract level (Nelissen et al., 2005). Such differences

may be a consequence of differences in connectivity with parie-

tal and other sensorimotor areas (Nelissen et al., 2011), which

were also apparent in our study.

Posterior vlFC and Cognitive Control
Parts of posterior vlFC have been associated with cognitive con-

trol processes, including inhibitory motor control (Aron, 2007),

cognitive task control (Dosenbach et al., 2006), cognitive flexi-

bility (Brass et al., 2005), and information updating (Duncan

and Owen, 2000). One of the first important results was

that DWI-tractography parcellation reliably distinguished five

areas—IFJ, 44d, 44v, Op, and IFS—from the surrounding cortex;

this is from both the more posterior PMv and the more anterior

and dorsal parts of prefrontal cortex. There has been interest

in the possibility that regions of vlFC differ in terms of their

involvement in various tasks of cognitive flexibility (Chikazoe

et al., 2009; Verbruggen et al., 2010). The parcellation, functional

coupling, and meta-analyses that we report here all suggest that

the regions participate in different cognitive processes.

For all five areas, we identified areas in macaque vlFC that

they resembled (Figures 5 and 6). Neurophysiological studies

of cognitive control in macaques have focused on the principal

sulcus region, but our results suggest that investigation of areas

44, Ia, and ProM might also shed light on the mechanisms of

cognitive control.

For both species, the functional coupling patterns of these five

regions participated in partly similar networks as premotor areas

6v/F5c and 6r/F5a, and indeed most were also coupled with 6v/

F5c and6r/F5a. From the similarity between the couplingpatterns

of these five areas andareas 6v/F5c and6r/F5a, their involvement

in action selection may be inferred. However, the additional and

distinct coupling of IFJ, 44d, 44v, Op, and IFS with visual associ-

ation areas in occipitotemporal cortex and dorsolateral prefrontal

cortex suggested important differences in function. We propose

that these five areas have more flexible control over action

selection—by reference to information from dorsolateral pre-
frontal cortex about higher order goals and sequential information

(Genovesio et al., 2012) and with access to richer descriptions of

visual features from the temporal lobe that go beyond the action

affordances encoded in parietal visuomotor neurons.

vlFC Areas Associated with Language
Although macaques lack language, we found regions in ma-

caque vlFC that showed a pattern of functional coupling similar

to human vlFC regions implicated in language. Human areas

45 and 47/12, which play roles in semantic processing, resemble

macaque areas 45A and 47/12. We also found similar subdivi-

sions in the human left and right hemispheres. Although Broca’s

area is only present in the left hemisphere, similarities in

cytoarchitecture and receptor densities in the two hemispheres

have been reported before (Amunts et al., 2010).

The development of abilities such as language may, therefore,

have exploited pre-existing mechanisms for sensory-motor

mapping (Rizzolatti and Sinigaglia, 2010), sequential motor

learning (Koechlin and Jubault, 2006), or multimodal sensory

integration (Passingham and Wise, 2012; Romanski, 2012).

Although we found similar coupling patterns with premotor

and parietal cortex, we also noted pronounced species differ-

ences in how most vlFC regions coupled with posterior auditory

association areas.Whereasmacaque auditory association areas

in the posterior temporal cortex coupled strongly with ACC

areas known to play a role in social cognition (Rudebeck et al.,

2006), human posterior auditory association areas coupled

more strongly with almost all vlFC regions.

These striking discrepancies might relate not just to the prom-

inence of auditory information in human language but even more

generally to the poor ability of macaques to use auditory informa-

tion for a range of purposes. For example, macaques perform

poorly in auditory working memory tasks (Scott et al., 2012),

and while they are readily able to learn to use visual information

to guide arbitrary and flexible patterns of decision making, they

find it difficult to use auditory information in the sameway (Gaffan

and Harrison, 1991). The ability that humans possess in using

auditory and verbal codes to guide decision making and in

short-term memory may depend on the coupling between pos-

terior auditory association cortex and ventrolateral prefrontal

cortex that only they, and not macaques, possess.

Anterior vlFC
Frontopolar cortex has been associated with representing future

and alternative courses of action (Boorman et al., 2011; Koechlin,

2011). Itsmoremedial part hasbeen implicated in social cognition

(Frith and Frith, 2007). In the present study, we subdivided it into

lateral, FPl, and medial, FPm, subdivisions. Both were distinct

from dorsolateral prefrontal area 46. Whereas human area 46

and FPm could be matched to macaque areas 46 and 10 on the

basis of their functional connectivity, human area FPl could not

easily be matched to any of the macaque prefrontal cortex

(PFC) regions. This supports the notion that human anterior

PFC contains a region not found in the macaque and suggests

it may support distinctive cognitive abilities. One way in which

new regions arise during speciation is as a consequence of con-

nections normally associated with one area invading an adjacent

area (Krubitzer, 2007). Human FPl’s coupling pattern may reflect
Neuron 81, 700–713, February 5, 2014 ª2014 Elsevier Inc. 709
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such a process. The existence of a distinctive human FPl region

may explain Mantini and colleagues (2013) recent finding of

distinctive components in human fMRI activity patterns.

Comparison with Previous Studies
The ROI we investigated was defined on the basis of sulcal

landmarks, but it corresponds approximately to the frontal and

opercular component of the frontoparietal task control and the

cingulo-opercular networks or the frontoparietal and ventral

attentional networks that have been described previously (Power

et al., 2011; Yeo et al., 2011).

Parcellation studies have previously identified areas 44 and 45

within human vlFC (Anwander et al., 2007; Klein et al., 2007). In

this study, we were also able to identify ten other regions beyond

areas 44 and 45 including a frontopolar region FPl unique to

humans. With the exception of FPl, we were able to relate

them to areas in the monkey brain.

Previous studies of human areas 44 and 45 have focused on

estimating the probability that the areas are connected with a

limited number of major white matter fascicles. By using similar

resting-state BOLD coupling measures in both species, we esti-

mated interaction strengths between each of our 12 vlFC regions

and 19 other brain areas in specific regions of temporal, parietal,

premotor, and cingulate cortex. This made it possible to show

that human and macaque vlFC regions are fundamentally similar

in their interactions with specific parietal, premotor, and cingu-

late regions and with visual association regions in temporal cor-

tex but not with superior temporal auditory association cortex.

VlFC circuits in humans and macaques differ in the manner in

which they interact with an important part of auditory association

cortex, but they greatly resemble each other in the manner in

which they interact with visual, action-selection, and decision-

making areas, thereby emphasizing the role of human vlFC,

even human vlFC areas such as 44 and 45, in functions other

than language.

Limitations
The DWI-tractography parcellation technique identifies repro-

ducible distinctions between brain areas (Mars et al., 2011;

Wang et al., 2012; Zhang et al., 2012) and areas that correspond

with histologically defined brain areas, both in terms of their po-

sitions in standard MNI space and with respect to sulcal land-

marks (Caspers et al., 2008; Mars et al., 2011; Scheperjans

et al., 2008). This suggests that areas we identify here corre-

spond to separable anatomical entities within vlFC that have a

reliable location in standard MNI space. However, it is important

to note that probabilistic DWI-tractography only estimates the

strength of evidence for a connection and that there are both

false positives and negatives in the connections it estimates

(Dyrby et al., 2007; Johansen-Berg and Rushworth, 2009). How-

ever, the correspondence between DWI-tractography parcella-

tion and histologically defined brain areas reflects the fact that

the parcellation approach draws on estimates of connectivity

between the ROI and every other voxel in the brain rather than

just on estimates of connectivity with a single region or pathway

that might be inaccurately characterized.

Other laboratories have attempted to parcellate human cortex

on the basis of differences in functional connectivity measured
710 Neuron 81, 700–713, February 5, 2014 ª2014 Elsevier Inc.
with fMRI and there are similarities, albeit not complete ones,

in the schemes that have been proposed using this approach

(Margulies et al., 2009; Power et al., 2011; Yeo et al., 2011)

and between such approaches and schemes employing DWI-

tractography-based parcellation approaches (Mars et al., 2011;

Nelson et al., 2010). This probably reflects the fact that functional

coupling between any two brain areas is a function of the

anatomical interconnections between the areas; functional

coupling is reduced when direct anatomical connections be-

tween the areas are removed but only abolished when indirect

anatomical connections are also removed (O’Reilly et al.,

2013). Functional connectivity measurements have the advan-

tage that they are less sensitive to interareal distance than are

DWI measurements. By drawing on both DWI-tractography

and fMRI connectivity, we have attempted to combine the

strengths of eachmethod but note that it cannot replace detailed

anatomical investigation both in animal models and human

tissue acquired postmortem (e.g., Amunts et al., 2010; Petrides

and Pandya, 2007). Nevertheless, we hope that our results

contribute to an understanding of how data derived from animal

models can be used to aid understanding of human brain

function.

EXPERIMENTAL PROCEDURES

Diffusion-Weighted Tractography-Based Parcellation

Diffusion-weighted images were acquired in 25 healthy right-handed partici-

pants on a 3 T Siemens Magnetom Verio MR scanner using standard DW-MRI

protocols (Supplemental Experimental Procedures 1). Analyses were per-

formed using tools from FSL (Functional MRI of the Brain Software Library),

the Human Connectome Project Workbench, and custom-made software

written in MATLAB (MathWorks). DW-MRI data were preprocessed in a stan-

dard way as previously described (Mars et al., 2011; Supplemental Experi-

mental Procedures 2).

For each participant, probabilistic tractography was run from each voxel in

the right vlFC ROI (the same steps were also performed for the left vlFC; Fig-

ure S3) to assess connectivity with every brain voxel (whole-brain ‘‘target’’ was

down sampled after tractography to 5 mm isotropic voxels for the connectivity

matrix to be manageable; however, the whole vlFC ROI was tracked in original

FA space, see Figure 1), using a model accounting for multiple fiber orienta-

tions in each voxel (Behrens et al., 2007). A connectivity matrix between all

right vlFC voxels and each brain voxel was derived and used to generate a

symmetric cross-correlationmatrix of dimensions (number of seeds3 number

of seeds) in which the (i,j) element value is the correlation between the connec-

tivity profile of seed i and the connectivity profile of seed j. The rows of this

cross-correlation matrix were then permuted using k-means segmentation

for automated clustering to define different clusters (Figure 1C and Figure S1).

The goal of clustering the cross-correlation matrix is to group together seed

voxels that share the same connectivity with the rest of the brain. The parcel-

lation into ten distinct regions was particularly consistent across subjects and

showed the smallest variance of the average cross-correlation, suggesting the

most coherent clustering into similarly correlated clusters (Supplemental

Experimental Procedures 3 discusses determination of regions and concept

of ‘‘brain region’’). We carried out an additional analysis in which we iteratively

parcellated vlFC into smaller and smaller regions and identified the same ten

regions (Supplemental Experimental Procedures 4 and Figure S2). Using this

approach, however, we showed that two of the areas could be subdivided,

bringing the total areas identified to 12.

Human Resting-State fMRI Data Acquisition, Preprocessing, and

Analysis

Human resting-state fMRI datawere collected for the same group of 25 healthy

volunteers in the same session using the same scanner. Participants were
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instructed to lie still and keep their eyes open and fixated at a cross. Resting-

state fMRI data acquisition and preprocessing were carried out in a standard

way as previously described (Mars et al., 2011; Supplemental Experimental

Procedures 5).

To establish the functional connectivity of each vlFC region, we created

ROIs from every parcel in each individual subject’s parcellation. As represen-

tation of each parcel, we took the 5% most likely voxels from each parcel’s

whole vlFC certainty maps (which in MNI space are always 170 voxels for a

3,400 voxel vlFC ROI) from the fuzzy-clustering-derived parcel-specific

maps. The fuzzy-clustering algorithm gives a certainty of each voxel belonging

to each of the clusters and hence provides a ‘‘certainty map’’ of the whole vlFC

ROI for each cluster. Note however that we also tried extracting the time

courses from each parcel as a whole from the ‘‘normal’’ k-means clustering

and obtained largely similar resting-state functional connectivity patterns.

Moreover, we drew cubic regions of interest (3 3 3 3 3 voxels, i.e., 6 mm

isotropic) at the center of gravity of each individual subject’s parcel and also

at the center of gravity of each parcel in the group maps and obtained qualita-

tively similar results. Individual ROIs were registered from each subject’s

DW-MRI space into fMRI space using FLIRT. Then the major Eigen time series

representing activity in each of the vlFC clusters was calculated.

Individual statistical maps were then calculated using a seed-based corre-

lation analysis, which is part of FSL (fsl_sbca) as previously described (Mars

et al., 2011; O’Reilly et al., 2010), in order to infer the functional connectivity

of these ROIs with the rest of the brain. For each vlFC subdivision, we created

a model consisting of the first Eigen time series of that region and the con-

founding time series representing head movement (six regressors resulting

frommotion correction usingMCFLIRT) and the Eigen time series of whitemat-

ter and corticospinal fluid (CSF). The results of each individual subject’s ROI-

specific seed-based-correlation analysis were then entered into a general

linear model (GLM) analysis. The resulting z statistical images were thresh-

olded using clusters determined by z > 4.0 and a (corrected) cluster signifi-

cance threshold of p < 0.05. These thresholded group z maps were projected

onto the CaretBrain as provided by the Human Connectome Project Work-

bench using the ‘‘surf_proj’’ algorithm as implemented in FSL and then visual-

ized using the Human Connectome Project Workbench. Unthresholded z

maps were quantified by extracting the average intensity of each cluster’s

functional connectivity z map in a number of cortical regions of interest (Tables

S1, S2, and S3). We drew 33 33 3 voxels, i.e., 6 mm isotropic, ROIs centered

on the coordinates mentioned in Table S1 and then averaged the z value from

the unthresholded seed-based correlation analysis-derived z maps within

these ROIs. These values for all ROIs and all vlFC areas were then binned

into four equally sized bins. Thesewere then displayed on a spider plot (Figures

4, 5, 6, and 8).

Macaque Resting-State fMRI Data Acquisition, Preprocessing, and

Analysis

Resting-state fMRI and anatomical scans were collected for 25 healthy ma-

caques (Macaca mulatta) (four females, age: 3.9 years, weight: 5.08 kg) under

light inhalational anesthesia with isoflurane (for detailed information on anes-

thesia protocol, monitoring of vital signs, data acquisition, and preprocessing,

see Supplemental Experimental Procedures 7). Protocols for animal care,MRI,

and anesthesia were performed under authority of personal and project

licenses in accordance with the United Kingdom Animals (Scientific Proce-

dures) Act (1986).

The goal of this part of the study was to test for similarities between the func-

tional networks previously established for human vlFC and vlFC regions in the

macaque. We therefore aimed to map the resting-state functional connectivity

networks of all cytoarchitectonically described areas in macaque vlFC and

adjacent ventral premotor and insular areas. Functional connectivity networks

of several regions (the lateral area 10, medial area 10, ventral area 10, area 46,

area 9/46v, area 47/12, area 45A, area 45B, area 44, area 8A [Petrides and

Pandya, 1999, 2002]; motor proisocortex [ProM], the anterior insula [Ai], and

the gustatory area [Carmichael and Price, 1994]; areas F5a, F5c, and F5p [Bel-

malih et al., 2009]) were identified using a seed-based-correlation analysis,

which is part of FSL (fsl_sbca), as in the human subjects, to infer the functional

connectivity of these ROIs with the rest of the brain. The seed regions were

specified in stereotactic atlases of the macaque monkey brain (Paxinos
et al., 2000; Saleem and Logothetis, 2007) and then drawn on the standard

brains of the respective atlas. They could then be registered between atlases

using FLIRT.

Comparison of Resting-State Functional Connectivity of Macaque

and Human vlFC

We identified the macaque regions most comparable to human vlFC regions

in terms of functional connectivity. The functional connectivity between each

vlFC area and 19 areas in the rest of the brain (each of which corresponded

in both humans and macaques; Table S2) was plotted on spider plots for

both species. The ROIs were 6 mm isotropic (coordinates in Table S1) for

humans and 3mm isotropic for macaques identified using stereotactic atlases

of the macaque monkey brain and then drawn on the standard brains of

the respective atlas. We then determined which macaque vlFC region corre-

sponded most closely to each human vlFC. A formal comparison between

human and macaque vlFC coupling patterns was performed by calculating

the summed absolute difference (the ‘‘Manhattan’’ or ‘‘city-block’’ distance

[Mars et al., 2013; Sallet et al., 2013]) of the normalized coupling scores

after binning into four equally sized bins. This yielded a summary measure

(Figure S6) of the difference in coupling patterns for each pair of areas in the

two species. The summary measure can then be used to compare the func-

tional coupling pattern of each human vlFC region with those of all vlFC regions

in the macaque.

Functional Coupling of Visual and Auditory Association Regionswith

Regions in vlFC and Medial Frontal Cortex

To compare functional coupling between vlFC and auditory association cortex

in posterior superior temporal cortex in humans and macaques, we rank or-

dered the strength of functional coupling (from lowest to highest) between

area Tpt and ten vlFC areas that corresponded in both humans and macaques

(average z value in cubic ROI 6 3 6 3 6 mm in human and 3 3 3 3 3 mm in

macaque) among the 19 previously described target regions (same regions

as in the spider plots). In other words, we assessed how strong the coupling

between area and Tpt and each vlFC subregion ranked in comparison to

coupling between Tpt and each of the other 19 areas (VMPFC, area 32, 9/

46d, etc.). We then performed a Mann-Whitney-Wilcoxon rank-sum test

(significance level p < 0.05), comparing the rank areas assigned to the coupling

strength between each vlFC region and Tpt in the two species (Figure 7, Fig-

ure S8 presents the same analysis not only for area Tpt [left] but also for ante-

rior auditory association area TS2, Figure S9 presents the same analysis for the

left hemisphere).

Another analysis compared the functional coupling of area Tpt (Figure 7; for

area TS2 see Figures S8 and S9) and nine cingulate cortex areas (Beckmann

et al., 2009). This means that there were always 29 (vlFC) or 28 (cingulate) ROIs

in each of the two separate analyses. The average z values in the target ROIs

representing coupling of area Tpt with vlFC or cingulate areas were ranked for

each individual and compared between species with a Mann-Whitney-Wil-

coxon rank-sum test (p < 0.05 significance level). A rank of 29 (vlFC analysis)

or 28 (cingulate analysis) was the highest possible rank (strongest coupling

of an ROI among all 29/28 ROIs).
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W.F., Hay-Schmidt, A., Eriksen, N., Pakkenberg, B., Paulson, O.B., and

Jelsing, J. (2007). Validation of in vitro probabilistic tractography.

Neuroimage 37, 1267–1277.

Friederici, A.D., and Gierhan, S.M. (2013). The language network. Curr. Opin.

Neurobiol. 23, 250–254.

Frith, C.D., and Frith, U. (2007). Social cognition in humans. Curr. Biol. 17,

R724–R732.

Gaffan, D., and Harrison, S. (1991). Auditory-visual associations, hemispheric

specialization and temporal-frontal interaction in the rhesus monkey. Brain

114, 2133–2144.
712 Neuron 81, 700–713, February 5, 2014 ª2014 Elsevier Inc.
Genovesio, A., Tsujimoto, S., and Wise, S.P. (2012). Encoding goals but not

abstract magnitude in the primate prefrontal cortex. Neuron 74, 656–662.

Higo, T., Mars, R.B., Boorman, E.D., Buch, E.R., and Rushworth, M.F. (2011).

Distributed and causal influence of frontal operculum in task control. Proc.

Natl. Acad. Sci. USA 108, 4230–4235.

Johansen-Berg, H., and Rushworth, M.F. (2009). Using diffusion imaging to

study human connectional anatomy. Annu. Rev. Neurosci. 32, 75–94.

Johansen-Berg, H., Behrens, T.E., Robson, M.D., Drobnjak, I., Rushworth,

M.F., Brady, J.M., Smith, S.M., Higham, D.J., and Matthews, P.M. (2004).

Changes in connectivity profiles define functionally distinct regions in human

medial frontal cortex. Proc. Natl. Acad. Sci. USA 101, 13335–13340.

Klein, J.C., Behrens, T.E., Robson, M.D., Mackay, C.E., Higham, D.J., and

Johansen-Berg, H. (2007). Connectivity-based parcellation of human cortex

using diffusion MRI: Establishing reproducibility, validity and observer inde-

pendence in BA 44/45 and SMA/pre-SMA. Neuroimage 34, 204–211.

Koechlin, E. (2011). Frontal pole function: what is specifically human? Trends

Cogn. Sci. 15, 241, author reply 243.

Koechlin, E., and Jubault, T. (2006). Broca’s area and the hierarchical organi-

zation of human behavior. Neuron 50, 963–974.

Krubitzer, L. (2007). The magnificent compromise: cortical field evolution in

mammals. Neuron 56, 201–208.

Luppino, G., Murata, A., Govoni, P., andMatelli, M. (1999). Largely segregated

parietofrontal connections linking rostral intraparietal cortex (areas AIP and

VIP) and the ventral premotor cortex (areas F5 and F4). Exp. Brain Res. 128,

181–187.

Mantini, D., Corbetta, M., Romani, G.L., Orban, G.A., and Vanduffel, W. (2013).

Evolutionarily novel functional networks in the human brain? J. Neurosci. 33,

3259–3275.

Margulies, D.S., Vincent, J.L., Kelly, C., Lohmann, G., Uddin, L.Q., Biswal,

B.B., Villringer, A., Castellanos, F.X., Milham, M.P., and Petrides, M. (2009).

Precuneus shares intrinsic functional architecture in humans and monkeys.

Proc. Natl. Acad. Sci. USA 106, 20069–20074.

Mars, R.B., Jbabdi, S., Sallet, J., O’Reilly, J.X., Croxson, P.L., Olivier, E.,

Noonan, M.P., Bergmann, C., Mitchell, A.S., Baxter, M.G., et al. (2011).

Diffusion-weighted imaging tractography-based parcellation of the human

parietal cortex and comparison with human and macaque resting-state func-

tional connectivity. J. Neurosci. 31, 4087–4100.

Mars, R.B., Sallet, J., Neubert, F.X., and Rushworth, M.F. (2013). Connectivity

profiles reveal the relationship between brain areas for social cognition in

human and monkey temporoparietal cortex. Proc. Natl. Acad. Sci. USA 110,

10806–10811.

Nelissen, K., Luppino, G., Vanduffel, W., Rizzolatti, G., and Orban, G.A. (2005).

Observing others: multiple action representation in the frontal lobe. Science

310, 332–336.

Nelissen, K., Borra, E., Gerbella, M., Rozzi, S., Luppino, G., Vanduffel, W.,

Rizzolatti, G., and Orban, G.A. (2011). Action observation circuits in the

macaque monkey cortex. J. Neurosci. 31, 3743–3756.

Nelson, S.M., Cohen, A.L., Power, J.D.,Wig, G.S., Miezin, F.M.,Wheeler, M.E.,

Velanova, K., Donaldson, D.I., Phillips, J.S., Schlaggar, B.L., and Petersen,

S.E. (2010). A parcellation scheme for human left lateral parietal cortex.

Neuron 67, 156–170.

Neubert, F.X., Mars, R.B., Buch, E.R., Olivier, E., and Rushworth, M.F. (2010).

Cortical and subcortical interactions during action reprogramming and their

related white matter pathways. Proc. Natl. Acad. Sci. USA 107, 13240–13245.

O’Reilly, J.X., Beckmann, C.F., Tomassini, V., Ramnani, N., and Johansen-

Berg, H. (2010). Distinct and overlapping functional zones in the cerebellum

defined by resting state functional connectivity. Cereb. Cortex 20, 953–965.

O’Reilly, J.X., Croxson, P.L., Jbabdi, S., Sallet, J., Noonan, M.P., Mars, R.B.,

Browning, P.G., Wilson, C.R., Mitchell, A.S., Miller, K.L., et al. (2013). Causal

effect of disconnection lesions on interhemispheric functional connectivity in

rhesus monkeys. Proc. Natl. Acad. Sci. USA 110, 13982–13987.



Neuron

Human and Monkey Ventrolateral Frontal Cortex
Passingham, R.E., and Wise, S.P. (2012). The Neurobiology of the Prefrontal

Cortex: Anatomy, Evolution, and the Origin of Insight. (Oxford: Oxford

University Press).

Paxinos, G., Huang, X.F., and Toga, A.W. (2000). The Rhesus Monkey Brain in

Stereotaxic Coordinates. (San Diego, London: Academic).

Petrides, M., and Pandya, D.N. (1999). Dorsolateral prefrontal cortex: compar-

ative cytoarchitectonic analysis in the human and the macaque brain and cor-

ticocortical connection patterns. Eur. J. Neurosci. 11, 1011–1036.

Petrides, M., and Pandya, D.N. (2002). Comparative cytoarchitectonic analysis

of the human and the macaque ventrolateral prefrontal cortex and corticocort-

ical connection patterns in the monkey. Eur. J. Neurosci. 16, 291–310.

Petrides, M., and Pandya, D.N. (2007). Efferent association pathways from the

rostral prefrontal cortex in the macaque monkey. J. Neurosci. 27, 11573–

11586.

Petrides, M., and Pandya, D.N. (2009). Distinct parietal and temporal pathways

to the homologues of Broca’s area in the monkey. PLoS Biol. 7, e1000170.

Petrides, M., Cadoret, G., and Mackey, S. (2005). Orofacial somatomotor

responses in the macaque monkey homologue of Broca’s area. Nature 435,

1235–1238.

Power, J.D., Cohen, A.L., Nelson, S.M., Wig, G.S., Barnes, K.A., Church, J.A.,

Vogel, A.C., Laumann, T.O., Miezin, F.M., Schlaggar, B.L., and Petersen, S.E.

(2011). Functional network organization of the human brain. Neuron 72,

665–678.

Rizzolatti, G., and Sinigaglia, C. (2010). The functional role of the parieto-frontal

mirror circuit: interpretations and misinterpretations. Nat. Rev. Neurosci. 11,

264–274.

Romanski, L.M. (2012). Integration of faces and vocalizations in ventral

prefrontal cortex: implications for the evolution of audiovisual speech. Proc.

Natl. Acad. Sci. USA 109 (Suppl 1 ), 10717–10724.

Rudebeck, P.H., Buckley, M.J., Walton, M.E., and Rushworth, M.F. (2006). A

role for the macaque anterior cingulate gyrus in social valuation. Science

313, 1310–1312.

Saleem, K.S., and Logothetis, N.K. (2007). A Combined MRI and Histology

Atlas of the Rhesus Monkey Brain in Stereotaxic Coordinates. (London:

Academic Press).

Sallet, J., Mars, R.B., Noonan, M.P., Neubert, F.X., Jbabdi, S., O’Reilly, J.X.,

Filippini, N., Thomas, A.G., and Rushworth, M.F. (2013). The organization of

dorsal frontal cortex in humans and macaques. J. Neurosci. 33, 12255–12274.
Scheperjans, F., Eickhoff, S.B., Hömke, L., Mohlberg, H., Hermann, K.,

Amunts, K., and Zilles, K. (2008). Probabilistic maps, morphometry, and vari-

ability of cytoarchitectonic areas in the human superior parietal cortex.

Cereb. Cortex 18, 2141–2157.

Schubotz, R.I., Anwander, A., Knösche, T.R., von Cramon, D.Y., and
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