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The right hippocampus participates in short-term memory
maintenance of object–location associations
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Doubts have been cast on the strict dissociation between short- and
long-term memory systems. Specifically, several neuroimaging studies
have shown that the medial temporal lobe, a region almost invariably
associated with long-term memory, is involved in active short-term
memory maintenance. Furthermore, a recent study in hippocampally
lesioned patients has shown that the hippocampus is critically involved
in associating objects and their locations, even when the delay period
lasts only 8 s. However, the critical feature that causes the medial
temporal lobe, and in particular the hippocampus, to participate in
active maintenance is still unknown. This study was designed in order
to explore hippocampal involvement in active maintenance of spatial
and non-spatial associations. Eighteen participants performed a
delayed-match-to-sample task in which they had to maintain either
object–location associations, color–number association, single colors,
or single locations. Whole-brain activity was measured using event-
related functional magnetic resonance imaging and analyzed using a
random effects model. Right lateralized hippocampal activity was
evident when participants had to maintain object–location associa-
tions, but not when they had to maintain object–color associations or
single items. The present results suggest a hippocampal involvement in
active maintenance when feature combinations that include spatial
information have to be maintained online.
© 2006 Elsevier Inc. All rights reserved.
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Introduction

Double dissociations between distinct types of memory have led
to the definition of separate memory systems, i.e., specific neural
networks that support specific mnemonic processes (Squire et al.,
1993; Schacter and Tulving, 1994; for a review, see Gabrieli, 1998).
Importantly, this research has suggested a dissociation between
short- and long-termmemory systems. Patients with bilateral medial
temporal lobe lesions typically exhibit normal short-term memory
performance, but severely diminished consciously accessible long-
term memory (i.e., episodic or declarative memory) (Scoville and
Milner, 1957); conversely, patients with perisylvian lesions show
impaired verbal short-term memory performance, but normal long-
term memory for verbal information (Shallice and Warrington,
1970; see also Vallar and Papagno, 1995). Persistent episodic
memories are thought to be based on changes in neural structures,
which are stable and do not require active maintenance by sustained
neural firing (Bliss and Lomo, 1973; Engert and Bonhoeffer, 1999;
Shors et al., 2001). In contrast, short-term memories are based on
sustained neural firing patterns in brain regions representing, for
instance, the perceptual or verbal features of a memory. This firing
pattern is actively maintained during the delay when information is
kept in short-term memory, typically spanning time periods of up to
several seconds (Fuster and Alexander, 1971; Goldman-Rakic,
1987; Miller et al., 1996; Miyashita and Chang, 1998).

Lately however, doubts have been cast on this strict
dissociation between short- and long-term memory (e.g.,
Wagner, 1999; Davachi et al., 2001; Ranganath and Blumenfeld,
2005; Olson et al., 2006). Several electrophysiological studies in
non-human primates and functional neuroimaging studies in
humans revealed delay period activity in the medial temporal
lobe, a structure traditionally implicated solely in long-term
memory, related to active maintenance of short-term or working
memory (e.g., Watanabe and Niki, 1985; Cahusac et al., 1993;
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Fig. 1. Experimental design.
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Miller et al., 1993; Suzuki et al., 1997; Mitchell et al., 2000a;
Stern et al., 2001; Ranganath and D’Esposito, 2001; Cabeza et
al., 2002; Schon et al., 2004; Ranganath et al., 2005a).
Furthermore, recently lesion evidence has become available,
indicating that amnesic patients with bilateral hippocampal
lesions cannot maintain object–location associations over short
time periods of a few seconds (Olson et al., 2006). To
accommodate the new findings, models suggesting an interac-
tion between the two types of memory have recently been
proposed (e.g., Baddeley, 2000; Jensen and Lisman, 2005).

Although the functional role of sustained activity in the medial
temporal lobe, and specifically in the hippocampus, remains elusive,
a recent proposal for an additional working memory module termed
the ‘episodic buffer’ might characterize its function (Baddeley,
2000). This buffer is proposed to be a limited capacity system that
provides, through active maintenance, a temporary storage of
information in a multimodal code capable of associating information
from subsidiary unimodal systems and long-term memory into a
coherent representation. Hence, in binding together related informa-
tion, sustained hippocampal activity might be important for both
working memory maintenance of associative information and the
encoding of new declarative memories (Schon et al., 2004;
Ranganath et al., 2005a).

Complicating this issue even further, it remains unclear under
which precise circumstances the hippocampus shows sustained
activity during a delay period of a short-term memory task. Both
animal and human studies have shown that the hippocampus is
critically important for associative memory tasks in which different
non-related components have to be associated. In those tasks, the
hippocampus functions as an integrative structure, binding together
the different aspects of an experience. However, there is some
debate on whether the hippocampal contribution to associative
memory is related mainly to spatial associations (O’Keefe and
Nadel, 1978; Chalfonte and Johnson, 1996; Wood et al., 2004) or
to associations in general (Eichenbaum et al., 1994; Henke et al.,
1997, 1999; Brasted et al., 2003; Luo and Niki, 2005; for a review,
see Kessels et al., 2001). Given this debate, one may ask whether
sustained hippocampal activity occurs during active maintenance
of spatial associations only or associations in general. To tackle this
issue, we conducted an event-related fMRI study, probing delay
period activity in a delayed-match-to-sample task (Sternberg,
1966) in which the participants had to maintain either spatial or
non-spatial associations.

Materials and methods

Participants

Eighteen right-handed (self report) healthy university students
(10 males, mean age 25.2 years, range 20–32 years, 1–5 years of
university level education) with normal or corrected-to-normal
vision participated in the experiment. All participants provided
written informed consent according to institutional guidelines of
the local ethics committee (CMO region Arnhem-Nijmegen,
Netherlands) and the declaration of Helsinki.

Experimental setup

During scanning, participants lay comfortably in a supine
position in the MR scanner. An adjusted padded head holder
restricted any head movements. Visual stimuli were projected onto
a translucent screen at the back of the scanner and seen by the
participants through a mirror in front of their eyes. All stimuli were
presented on a black background. Button press responses were
recorded via an MR-compatible keypad.

Participants performed a 3-item delayed-match-to-sample task
(Sternberg, 1966) with eight different one-digit numbers (1–8;
visual angle ~3°) as stimuli, presented randomly in eight different
colors (green, yellow, orange, red, pink, blue, cyan, and gray) and
at eight different locations on the screen. Stimuli were presented at
the corners of a horizontally and vertically centered, symmetric,
invisible octogram (~18° off center). We used a 2×2 factorial
design with the factors ASSOCIATION (single vs. multiple) and
SPACE (location vs. color). Thus, the experiment included four
conditions in which the participants were instructed to retain (a) the
location at which the stimuli were presented (spatial single), (b) the
color of the stimuli (non-spatial single), (c) the combination of the
identity of the stimuli and their location (spatial multiple), or (d)
the combination of the identity of the stimuli and their color (non-
spatial multiple).

An instructive cue presented for 1 s at the start of each trial
indicated which feature or features had to be retained. Subse-
quently, three items were presented sequentially (1 s per stimulus).
After a variable delay (range: 9–20 s, uniform distribution), during
which the participant was instructed to fixate on a centrally
presented cross, one probe item was presented (2 s; see Fig. 1).
Participants were instructed to respond to the probe by a button
press with the right index finger if the feature or specific
combination of features specified by the initial cue belonged to
the current set, or with the right middle finger if this did not belong
to the current set. Trials were separated by a variable inter-trial
interval (range: 4–9 s, uniform distribution).

This setup allowed us to probe sustained blood oxygen level
dependent (BOLD) responses associated with the delay interval.
Introducing a mismatch between the start of successive trials
and volume acquisition allowed us to characterize the evoked
hemodynamic response at a finer temporal resolution than the
actual TR (Josephs et al., 1997). The variable delay intervals
allowed us to partition the variance into separate components
for the stimulus set, the delay interval, and the probe and
subsequent response (see Toni et al., 1999 for a similar
approach). Eighty-eight trials from four conditions (22 trials per
condition, 50% matches) were presented randomly intermixed
over the course of the scanning session. Before the experiment,
simulations were run to determine the optimal distribution of
trial types and delay lengths as to ensure sufficiently low
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correlations to allow each of the separated regressors to be
estimated reliably (Dale, 1999). A unique stimulus list was
created for each participant, randomizing number, color,
location, and delay length.

Prior to the start of the experiment and in order to account
for initial learning effects, participants practiced the task for 32
trials outside the scanner. The practice material was different
from the stimulus set used in the actual scanning session.
Subjects were instructed to prioritize correct responding over
speed.

fMRI data acquisition

During MRI scanning, whole head T2*-weighted EPI-BOLD
fMRI data were acquired within one run of approximately 998
volumes with a Siemens Sonata 1.5 T MR scanner using an
ascending slice acquisition sequence (33 axial slices, volume
TR=2.29 s, TE=30 ms, 90° flip-angle, slice-matrix size=64×64,
slice thickness=3.0 mm, slice gap=0.5 mm, field of view=224 mm
resulting in an in-plane resolution of 3.5×3.5 mm). Following the
experimental session, a high-resolution structural image was
acquired, using a T1-weighted MP-RAGE sequence (volume
TR=2250 ms, TE=3.93 ms, 15° flip-angle, 176 sagittal slices,
slice-matrix size = 256 × 256, slice thickness = 1 mm, slice
gap=0 mm, field of view=256 mm).

Behavioral data analysis

The error rates per condition, acquired during scanning, were
subjected to a repeated measures analysis of variance with the
factors ASSOCIATION (single versus multiple) and SPACE
(location versus color). Post hoc, significant interactions were
investigated using paired-samples t tests.

fMRI data analysis

Image pre-processing and statistical analysis were performed
using the SPM2 software (http://www.fil.ion.ucl.ac.uk/spm). The
first five volumes of each participant’s data set were discarded
to allow for T1 equilibration. Each subject’s functional images
were spatially realigned using a sinc interpolation algorithm that
estimates rigid body transformations (translations, rotations) by
minimizing head movements between each image and the
reference image (Friston et al., 1995b). The subject’s structural
MR image was coregistered to the mean of the functional
Fig. 2. Delay period activation of all four conditions against a low-level vi
images, using mutual information optimization. Subsequently,
the functional images were slice-time-corrected, spatially
normalized, and resampled to create 2 mm isotropic voxels,
and transformed into a common stereotactic space, as defined
by the SPM2 MNI T1 template, and spatially filtered by
convolving the functional images with an isotropic 3D Gaussian
kernel (10 mm FWHM). The choice of smoothing kernel was
optimized for the hippocampus, our primary region of interest
for this study, as suggested by a comparative study (Hopfinger
et al., 2000). The fMRI data were statistically analyzed using
the general linear model and statistical parametric mapping
(Friston et al., 1995a). For each of the four conditions, separate
regressors were created for cue and stimulus set presentation,
delay interval, and probe and response-related effects. Separate
regressors were created for correct and incorrect trials. In
addition, the realignment parameters were included in the model
to account for movement-related variability. The data were high-
pass-filtered (128 s) to account for various low-frequency
effects. Temporal autocorrelation was modeled as an AR(1)
process.

Tackling the question at issue, we created contrast images of
delay-related effects on correct trials only and entered them into a
second-level analysis, treating subjects as a random variable.
Hence, we are probing brain activity related to sustained activity of
short-term memory.

At the second level, the data were modeled as an ANOVA
with the factors ASSOCIATON and SPACE with non-sphericity
correction for correlated repeated measures. As a first
explorative analysis, we reviewed the main effects and
interactions over the whole brain using a threshold of
p<0.001 (uncorrected). Following this preliminary inspection,
we further employed cluster size statistics as the test statistic for
our whole-brain analyses, only considering clusters of activation
significant at a threshold of p≤0.05 (corrected for multiple
comparisons). The atlas of Duvernoy et al. (1991) was used to
identify relevant anatomical landmarks.

Given our regional specific hypothesis regarding the
hippocampus, we took a slightly different hierarchical approach
for this region (Friston et al., 1996). Activation in the
hippocampus during the preliminary whole-brain analysis at
p<0.001 uncorrected was taken as a justification for an a priori
defined region of interest analysis (ROI). The hippocampal
region of interest was defined using the WFU PickAtlas
Toolbox for SPM (Maldjian et al., 2003). Both the cluster size
and local maximum test statistics were employed in this ROI
sual fixation baseline rendered onto the surface of a canonical brain.
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Table 1
Regions showing delay-related activation (correct trials only) against a low-
level visual fixation baseline

General delay effects Brodmann's
area

X Y Z t
value

Left anterior cingulate cortex 32 −6 12 60 6.06
32 −10 18 46 4.59

Left superior frontal gyrus 8 −10 20 50 4.48
8 −12 20 54 4.19

Right middle/superior frontal
gyrus

6/8 24 −8 48 6.92
6 50 −2 40 6.59
6 26 −2 60 7.18
6/8 20 8 60 7.18

Left middle/superior frontal
gyrus

6/8 −28 −2 48 8.04
6 −50 −4 50 7.66
6 −24 0 60 5.96

Right inferior/middle frontal
gyrus

6/44 36 −4 30 4.06
6/44 40 4 28 3.84

Right orbitofrontal cortex 11 20 28 −8 4.78
Right precentral gyrus 4/6 36 −22 54 4.81
Left precentral gyrus 4/6 −42 −14 42 3.89
Right precuneus 7 6 −46 62 8.71

7 8 −52 60 6.83
Left precuneus 7 −10 −50 60 6.71

7 −14 −52 60 6.67
Right superior parietal lobule 7 18 −52 54 8.28
Left superior parietal lobule 7 −20 −66 54 9.19
Right superior/inferior parietal

lobule
7/40 −28 −70 34 5.89

Left superior/inferior parietal
lobule

7/40 −24 −60 46 6.88

Right inferior occipital gyrus 17/18 8 −92 2 6.44
Left inferior occipital gyrus 18/19 −42 −72 −8 6.45

18/19 −50 −64 −12 6.44
Right middle occipital gyrus 18/19 14 −92 18 6.32
Left middle occipital gyrus 18/19 −16 −92 20 7.25
Right superior occipital gyrus 19 26 −82 26 5.17
Left superior occipital gyrus 19 −26 −80 30 6.23
Right inferior occipital/temporal

gyrus
19/20/37 48 −60 −10 4.67
19/20/37 52 −50 −12 3.94

Left inferior occipital/temporal
gyrus

19/20/37 −46 −66 −10 6.40

Right lingual/fusiform gyrus 18/19 20 −72 −6 8.40
Left lingual/fusiform gyrus 18/19 −14 −74 −4 8.87
Left fusiform gyrus 19/37 −38 −60 −10 6.11
Left fusiform/parahippocampal

gyrus
19/32 −32 −46 −22 9.33

Right putamen/globus pallidus 24 8 10 4.34
24 −12 10 4.31

Left putamen/globus pallidus −22 6 12 5.91
−20 −8 12 4.65

All local maxima listed belong to clusters significant at p≤0.05 (corrected).
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analysis and all reported p values are corrected for multiple
non-independent comparisons based on the family-wise error
correction (Friston et al., 1996) (Fig. 2).

Results

Behavioral data

Participants performed significantly above chance level
(50%) in all conditions (1) ‘spatial single’: mean correct 87%
(SD 10%; mean RT: 1533 ms), t(17)=16.0, p<0.0001, (2) ‘non-
spatial single’: mean correct 93% (SD 6%; mean RT: 1488 ms),
t(17)=31.3, p<0.0001, (3) ‘spatial multiple’: mean correct 91%
(SD 7%; mean RT: 1720 ms), t(17)=24.3 p<0.0001, and (4)
‘non-spatial multiple’: mean correct 78% (SD 14%; mean RT:
1999 ms), t(17)=8.1, p<0.0001. These behavioral results are
consistent with earlier studies using a similar task (e.g., Mitchell
et al., 2000a,b). Recognition performance varied significantly
across conditions. There was a main effect of ASSOCIATION
(single vs. multiple: F(1,17)=9.1, p<0.01) and an interaction
between the factors ASSOCIATION and SPACE F(1,17)=25.7,
p<0.0001. A post hoc t test indicated that participants
performed significantly better in the ‘spatial multiple’ condition
compared to the ‘non-spatial multiple’ condition t(17)=4.3,
p<0.001. In addition, subjects performed better on the ‘non-
spatial single’ condition compared to the ‘spatial single’
condition t(17)=3.0, p<0.01.

fMRI data

Whole-brain analyses showed that a variety of regions
commonly associated with active working memory maintenance
(i.e., specific parietal, temporal, and frontal regions; for a review,
see Wager and Smith, 2003) were active when all delay periods
on correct trials (independent of condition) were compared to a
low-level inter-trial visual fixation baseline (see Table 1). This
finding shows that our setup was suitable to assess the brain
regions involved in short-term memory maintenance.

Our aim was to reveal critical features that cause medial
temporal participation in the delay period of a short-term
memory task, focusing on spatial binding and binding in
general. Hence, we performed an ANOVA with the factors of
ASSOCIATION and SPACE on the correct trials only. In the
medial temporal lobe, this ANOVA revealed an interaction in
the right hippocampus (p<0.001 uncorrected). Given our
regional specific hypothesis, we investigated the hippocampal
cluster using a hippocampal mask defined by the WFU
PickAtlas in SPM (Maldjian et al., 2003). This revealed a
cluster with a local maximum at [30, −20, −10] (t(51)=4.08,
p=0.033 corrected) which was most active in the spatial
multiple condition. To confirm that the hippocampus was indeed
activated during the delay period when number–locations
associations were maintained, we contrasted activity in the
spatial multiple condition with activation during baseline and
found indeed a hippocampal cluster with a local maximum at
[30 −24 −12] (t(51)=3.17, p=0.015 corrected). Moreover, the
interaction blob remains when inclusively masked with the
spatial multiple>baseline contrast. All other conditions did not
activate the hippocampus significantly when contrasted to the
baseline (see Fig. 3b). To ensure that the observed activation
was indeed localized in the hippocampus, we increased the
localization accuracy by using a smoothing kernel of 6 mm
FWHM (Fig. 3d).

No significant interaction was found in the left medial
temporal lobe. We explicitly tested this hemispheric difference
explicitly by comparing the right and the left hippocampal
activation levels. We tested for the nearest suprathreshold cluster
in the right vs. left comparison and observed a significant
difference (cluster p<0.001; right> left, with local maximum
corresponding to [−28 −18 −18], t(17)=3.78, p=0.001). Hence,
the interaction described above is significantly stronger in the
right than the left hippocampus.



Fig. 3. Interaction between the factors ASSOCIATION and SPACE. Panel a shows an SPM (Intensity projection) of whole-brain activity; panel b shows averaged
BOLD responses temporally aligned to stimulus offset and probe onset, separated for all conditions. Data are derived from the local maximum in the right
hippocampus. Error bars represent standard deviations, and the black horizontal bars depict the averaged time window of the delay period, the stimulus, and the
probe presentation (blue line ‘location’, black line ‘color’, red line ‘location and number’, gray line ‘color and number’); panel c shows the right hippocampal
interaction on a selected coronal slice of the averaged T1 image; panel d confirms the effect in the right hippocampus with a smaller smoothing kernel of 6 mm
FWHM; and panel e shows the (pre)cuneus interaction on a selected sagittal slice.
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We did not find a reliable main effect for the factors
ASSOCIATION and SPACE in the hippocampus. To test whether
these null effects are related to a thresholding artifact (type II
error), we lowered the threshold to p<0.01 uncorrected. While we
did not find a trend for a main effect of the factor ASSOCIATION,
we did find one for the factor SPACE (cluster with local maximum
at [26 −12 −22], t(51)=2.41, p=0.01).

In addition to the hippocampal activation, at a cluster
threshold of p<0.05 corrected for multiple comparisons over the
whole brain, a caudomedial area at the dorsal border of BA18
(as indicated by the SPM anatomy toolbox (Eickhoff et al.,
2005; Amunts et al., 2000)) covering parts of the cuneus and
precuneus (cluster p=0.003 corrected) survived. This interaction
is due to a larger difference in activation in the ‘spatial single’
vs. ‘spatial multiple’ comparison (with stronger responses for
‘spatial multiple’ than the ‘spatial single’ condition), as
compared to the ‘non-spatial single’ vs. ‘non-spatial multiple’
(see Table 2, Fig. 3e).
Table 2
Regions showing delay-related activation on correct trials in the interaction
between the factors ASSOCIATION and SPACE

Interaction effects Brodmann's area X Y Z t value

(Pre)cuneus 19/31 −2 −76 24 4.21
18/19 6 −78 22 4.07
19/31 −2 −76 34 4.06
7/31 12 −64 34 3.79

Right hippocampus 30 −20 −10 4.08
Discussion

This study explored the circumstances under which sustained
hippocampal activity is present during the delay period of a short-
term memory task. The results suggest that this hippocampal
involvement is dependent on the information that needs to be
maintained. Specifically, in our study, the right hippocampus is
active during short-term memory maintenance of feature combina-
tions that include spatial information (location–number associa-
tions), but not during maintenance of non-spatial feature
combinations (color–number associations) or single items. The
only other interaction found in this analysis was revealed in a
caudomedial region including parts of the cuneus and the precuneus.

Binding of trial features in the hippocampus

Interestingly, our result suggests that the right hippocampus is
specifically involved in the active maintenance of associations with
spatial information, as compared to associative information in
general. This finding is in line with previous studies conducted in
rats (Gilbert and Kesner, 2002; Wood et al., 2004) and humans
(Bohbot et al., 1998; Kessels et al., 2001), suggesting that
hippocampal integrity is critically important for spatial, but not for
non-spatial associations. However, this suggestion remains con-
troversial following reports of involvement of the human hippo-
campus in associative binding beyond the spatial domain (e.g.,
Eichenbaum, 2004; Henke et al., 1999).

The reason for this potential specificity to spatial associative
information might be the crucial role of the hippocampus in spatial
processing. As initially found in rodents and later confirmed in
primates and humans, the hippocampus has the ability to internally
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code spatial location by specific firing patterns (Ekstrom et al., 2003;
O’Keefe and Dostrovsky, 1971). Hence, the hippocampus is well
suited to bind together spatial information with the object
information it receives (in)directly from the inferior temporal cortex
(Mishkin, 1982). This binding is suggested to underlay the encoding
and retrieval of episodic memories which invariably contain spatial
information (O’Keefe and Nadel, 1978; Burgess et al., 2002).
Consistent with this suggestion, a recent study in macaque monkeys
identified hippocampal neurons that encode specific conjunctions of
objects and their locations (Rolls et al., 2005). In humans,
hippocampal activation has been shown in a short-term memory
task when an object had to be bound to its spatial location (Mitchell
et al., 2000a) and in studies that use real-world photographs of
complex indoor and outdoor scenes depicting a large-scale spatial
layout (Stern et al., 2001; Schon et al., 2004).

Alternatively, the dissociation found between spatial and
non-spatial associative memory might not be based on the
spatial feature per se, but on a difference in the demand for
binding distributed neocortical codes. According to this inter-
pretation, the hippocampus is involved in the integration of
features that are not processed in an integrated fashion at earlier
levels of processing. In the present setup, color and number
may already be integrated in higher-order visual processing
stages (Sakai and Miyashita, 1991), while the number and its
location, two features which are processed in different cortical
areas (Ungerleider and Mishkin, 1982; Andersen et al., 1985;
Lueck et al., 1989), rely on the hippocampus for their
integration. This interpretation would also be able to account
for hippocampal activation in earlier studies on associative
memory using nonsense objects, face/face pairs, or complex
indoor/outdoor scenes (Vargha-Khadem et al., 1997; Schon
et al., 2004; Ranganath et al., 2005a). Since the hippocampus
receives input from the entire association cortex, it is positioned
ideally for a region concerned with associating different aspects
of an experience that have not been integrated at an earlier level
of processing (Van Essen et al., 1992).

Short- and long-term interactions and the medial temporal lobe

Hippocampal involvement in short-term memory remains a
topic of controversy. As described in the Introduction section,
double dissociations between distinct types of memory have led to
the definition of separate memory systems (Gabrieli, 1998).
Patients with bilateral medial temporal lobe lesions typically
exhibit normal short-term memory performance, but severely
diminished consciously accessible long-term memory (i.e., episo-
dic or declarative memory) (Scoville and Milner, 1957). Although
the tasks used to investigate short-term memory in patients with
bilateral medial temporal lobe lesions are of a wide variety using
different kinds of stimuli, most of these investigations used only
simple short-term memory tests such as span, delayed-match-to-
sample, or n-back tasks using single words, letters, or digits as
stimuli (e.g., Scoville and Milner, 1957; Cave and Squire, 1992;
Aggleton et al., 2000; Spiers et al., 2001; Ryan and Cohen, 2004).
This leaves open the possibility that only short-term memory
performance as assessed by these simple tests is unimpaired in
amnesic patients. It is thus possible that the medial temporal lobe
participates in more complex short-term memory tasks as
suggested by our data and recent data by others (e.g., Schon et
al., 2004; Ranganath et al., 2005a, Olson et al., 2006; for a review,
see Ranganath and Blumenfeld, 2005).
To incorporate these findings, a number of recent models on
memory formation emphasize the interaction between short- and
long-term memory in the hippocampus (e.g., Atkinson and Shiffrin,
1968; Cowan, 1995; Baddeley, 2000). For example, Baddeley
recently suggested an extension of the original working memory
model (Baddeley and Hitch, 1974), accounting for some of the
phenomena outlined above (Baddeley, 2000). According to the
original model, working memory is a central cognitive capacity that
supports several higher order cognitive functions and is composed of
a central executive with two support systems, the phonological loop
and the visuo-spatial sketchpad. Long-term knowledge can
influence the operation of working memory, but the two are
considered strictly separable cognitive systems (Baddeley and
Logie, 1999). In the recent extension of the model, however, an
episodic buffer was added (Baddeley, 2000). This new component
plays an important role in feeding information into, and retrieving
information from, episodic long-term memory. The episodic buffer
shares some characteristics with the concept of episodic memory
(Tulving, 1989) with respect to its principal mode of storing
information in episodic format and its emphasis on integrative
aspects but differs in that it is assumed to be a temporary store based
on active maintenance. Thus, this episodic buffer might provide an
interface between working and long-term memory. In emphasizing
its short-term integrative role and the episodic format used, one may
hypothesize that the episodic buffer is related to the prefrontal
cortex, the medial temporal lobe, or both. The transient early role of
the medial temporal lobe in long-term memory formation and
sequence encoding in conjunction with the posterior parietal and
prefrontal regions makes these areas likely candidates (cf. e.g.,
Eichenbaum, 2000; Fernández and Tendolkar, 2001; Simons and
Spiers, 2003). In the extraction of information from working
memory, a key function for the episodic buffer might be the
integration of different subcomponents of working memory.

A second illustration of the re-evaluation of the dissociation
between short- and long-term memory is the study conducted by
Schon and colleagues. They showed that delay period activity in the
hippocampus and related structures correlates positively with
subsequent long-term memory performance (Schon et al., 2004;
see also Ranganath et al., 2005a). This result is in line with a number
of computational models that emphasize the necessity of active
maintenance in medial temporal circuits for long-term memory
formation (e.g., Jensen and Lisman, 1996, 2005; Koene et al., 2003).
Thus, the activation of the hippocampus in this study may be due to
the fact that the hippocampus is already actively forming long-term
memory traces of the associations. This interpretation is supported
by the study by Schon and colleagues, who show that medial
temporal lobe involvement in working memory is a good predictor
for successful long-term memory formation (Schon et al., 2004).
The reason why we do not find this activation in the number–color
association may be that this association is integrated in an earlier
processing stage and thus does not need to be bound together for
long-term memory storage. Hence, short- and long-term memory
can interact seamlessly under certain circumstances, and the medial
temporal lobe may serve as an interface where short-term and long-
term memory interact in order to support (associative) memory
capacities (Scoville and Milner, 1957; Olson et al., 2006). The
current challenge is to further specify the exact conditions under
which the hippocampus is involved in this interaction. Our study
provides a possible framework for the integration of this emerging
literature discussed above and the well-known role of the
hippocampus in spatial and associative memory.



380 C. Piekema et al. / NeuroImage 33 (2006) 374–382
The (pre)cuneus

The (pre)cuneus effect might be directly related to the effects
observed in the hippocampus because this region is closely
interlinked with the medial temporal lobe (Lavenex et al., 2002).
The (pre)cuneus has been proposed to play an important role in
episodic memory retrieval and thus in the process of retrieving
information embedded in a spatial (and temporal) context (Wagner et
al., 2005). Furthermore, a recent study investigating regions in which
activity covaried with activity in the hippocampus identified a strong
functional connectivity between the hippocampus and (among other
regions) the precuneus and posterior cingulate gyrus during the early
delay period of a working memory task with complex, trial unique
stimuli (Ranganath et al., 2005b). This region and the hippocampus
might therefore form a network of interacting brain areas mediating
active maintenance of spatial associative information, and it might
represent an interface between classical working memory areas in
the prefrontal cortex and long-term memory areas in the medial
temporal lobe (Kobayashi and Amaral, 2003).

Conclusion

This study characterizes specific circumstances under which the
hippocampus is involved in a short-term memory task. We have
shown that the right hippocampus is active during the delay
interval of a short-term memory task specifically when associations
between an object and its location have to be held online. These
findings confirm and extend recent human lesion evidence (Olson
et al., 2006) by showing that the spatial association held online
specifically drives hippocampal contribution to short-term memory
maintenance.
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